3804
Lal Dhar S. Yadav, C. Awasthi / Tetrahedron Letters 50 (2009) 3801–3804
5. Bégué, J. P.; Bonnet-Delpon, D.; Kornilov, A. Synthesis 1996, 529.
6. Kesavan, V.; Bonnet-Delpon, D.; Bégué, J. P. Tetrahedron Lett. 2000, 41, 2895.
7. (a) Adger, B. M.; Barkley, J. V.; Bergeron, S.; Cappi, M. W.; Flowerdew, B. E.;
Jackson, M. P.; McCague, R.; Nugent, T. C.; Roberts, S. M. J. Chem. Soc., Perkin
Trans. 1 1997, 3501; (b) Ozaki, E.; Matsui, H.; Yoshinaga, H.; Kitagawa, S.
Tetrahedron Lett. 2000, 41, 2621.
8. Schwartz, A.; Madan, P. B.; Mohacsi, E.; ÓBrien, J. P.; Todaro, E.; Coffen, D. L. J.
Org. Chem. 1992, 57, 851.
9. (a) Aifheli, C. G.; Kaye, P. T. Synth. Commun. 1996, 26, 4459; (b) Sugihara, H.;
Mabuchi, H.; Hirata, M.; Lamamoto, T.; Kawamatsu, Y. Chem. Pharm. Bull. 1987,
35, 1930.
with brine, dried over MgSO4, and evaporated under reduced pressure. The
resulting product was purified by silica gel column chromatography using
hexane/ethyl acetate (9.7:0.3) as eluent to afford an analytically pure sample of
4. After isolation of the product, the remaining aqueous layer containing the
ionic liquid was washed with ether (2 Â 10 mL) to remove any organic
impurity and filtered. The filtrate was extracted with CH2Cl2 (3 Â 10 mL), dried
over MgSO4, and evaporated under reduced pressure to afford [bmim]Br, which
was used in subsequent runs without further purification. Physical data of
representative compounds. Compound 5a: Yellowish solid, yield 90%, mp 156–
158 °C. IR (KBr) mmax 3055, 2992, 2858, 2242, 1743, 1698, 1583, 1451, 760,
697 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 2.08 (s, 3H, OCOCH3), 4.72 (d, 1H,
.
10. Lucy, J. R.; Yi, N.; Soderquist, J.; Stein, H.; Cohen, J.; Perun, T. J.; Plattner, J. J. J.
Med. Chem. 1987, 30, 1609.
11. Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.; Samuelsson, B.;
Hammarstrom, S. J. Am. Chem. Soc. 1980, 102, 3663.
J = 12.2 Hz, b-Ha), 4.98 (d, 1H, J = 12.2 Hz, b-Hb), 7.08–7.64 (m, 8Harom), 7.98 (t,
2H, J = 7.6 Hz, Harom). 13C NMR (100 MHz; CDCl3/TMS) d: 20.1, 52.4, 61.7, 116.9,
122.3, 124.8, 126.0, 127.5, 128.6, 133.6, 137.7, 139.4, 174.3, 198.9. EIMS (m/z):
325 (M+). Anal. Calcd for C18H15NO3S: C, 66.50; H, 4.65; N, 4.30. Found: C,
66.80; H, 5.02; N, 3.98. Compound 4e: yellowish solid, yield 87%, mp 120–
122 °C. IR (KBr) mmax 3052, 2990, 2857, 2240, 1743, 1698, 1581, 1452, 759,
12. (a) Takeuchi, H.; Kitajima, K.; Yamamoto, Y.; Mizuno, K. J. Chem. Soc., Perkin
Trans. 2 1993, 199; (b) Toshimitsu, A.; Hirosawa, C.; Nakano, K.; Mukai, T.;
Tamao, K. Phosphorus, Sulfur Silicon Relat. Elem. 1997, 120, 355; (c) Metzner, P.;
Thuillier, A. In Sulfur Reagents in Organic Synthesis; Katritzky, A. R., Meth-
Cohn, O., Rees, C. W., Eds.; Academic Press: San Diego, 1994; (d) Swiss, K. A.;
Liotta, D. C.. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press Ltd: New York, 1991; Vol. 7, p 515.
13. Beckwith, A. L. J.; Wagner, R. D. J. Org. Chem. 1981, 46, 3638.
14. (a) Bewick, A.; Mellor, J. M.; Milano, D.; Owton, W. M. J. Chem. Soc., Perkin Trans.
1 1985, 1045; (b) Taniguchi, N. J. Org. Chem. 2006, 71, 7874.
695 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 0.89 (t, 3H, J = 7.1 Hz, CH3), 1.40–
.
1.43 (m, 2H, CH2), 2.07 (s, 3H, OCOCH3), 2.47 (t, 2H, J = 7.2 Hz, CH2), 4.73 (d, 1H,
J = 12.2 Hz, b-Ha), 4.89 (d, 1H, J = 12.2 Hz, b-Hb), 7.53 (t, 1H, J = 7.7 Hz, Harom),
7.64 (t, 2H, J = 7.4 Hz, Harom), 7.97 (t, 2H, J = 7.6 Hz, Harom). 13C NMR (100 MHz;
CDCl3/TMS) d: 15.0, 20.3, 23.5, 31.0, 50.4, 62.1, 116.9, 127.4, 128.6, 133.2,
138.9, 173.3, 198.7. EIMS (m/z): 291 (M+). Anal. Calcd for C15H17NO3S: C, 61.89;
H, 5.88; N, 4.81. Found: C, 61.52; H, 6.08; N, 4.52.
27. General procedure for the synthesis of 1,2-dithioethers 5: A mixture of [bmim]Br
(3 mL), water (0.5 mL), and IBX (1 mmol) was stirred at rt for 5–10 min
followed by addition of BH alcohol 1 (1 mmol) and stirring at rt for 1–2 h. After
complete oxidation (monitored by TLC) organodisulfide 3 (0.5 mmol) was
added and the reaction mixture was stirred for a further 10–12 h at rt (Table 3).
Then, saturated aqueous NaHCO3 solution (10 mL) was added and organic
phase was extracted with ether (3 Â 10 mL) then washed with brine, dried
over anhydrous Na2SO4, and evaporated under reduced pressure to give the
crude product that was purified by silica gel column chromatography using
hexane/ethyl acetate (9.8:0.2) as eluent to afford an analytically pure sample of
5. Ionic liquid was recovered by the same method as given above26 and used
for subsequent runs without further purification. Physical data of
representative compounds. Compound 5a: yellowish solid, yield 88%, mp
178–180 °C. IR (KBr) mmax 3054, 2989, 2857, 2239, 1696, 1451, 1580, 759,
15. Caserio, M. C.; Fisher, C. L.; Kim, J. K. J. Org. Chem. 1985, 50, 4390.
16. Kitamura, T.; Matsuyuki, J.-I.; Taniguchi, H. J. Chem. Soc., Perkin Trans. 1991, 1,
1607.
17. Usugi, S.-i.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 601.
18. Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 482.
19. (a) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511; (b) Basavaiah, D.; Rao, A. J.;
Satyanarayana, T. Chem. Rev. 2003, 103, 811; (c) Langer, P. Angew. Chem., Int. Ed.
2000, 39, 3049; (d) Basavaiah, D.; Rao, P. D. Tetrahedron 1996, 2, 8001.
20. Basavaiah, D.; Rao, V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581.
21. (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: San
Diego, 1997; (b) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271.
22. (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123; (b) Kitamura, T.;
Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409.
23. (a) Wirth, T. Angew. Chem., Int. Ed. 2001, 40, 2812; (b) Ladziata, U.; Zhdankin, V.
V. Arkivoc 2006, ix, 26; (c) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew.
Chem., Int. Ed. 2002, 41, 993; (d) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.;
Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124,
2233; (e) Yadav, J. S.; Reddy, S.; Singh, A. P.; Basak, A. K. Tetrahedron Lett. 2007,
48, 7546.
24. (a) Gathergood, N.; Scammels, P. J.; Teresa Garcia, M. Green Chem. 2006, 8, 156;
(b) Teresa Garcia, M.; Gathergood, N.; Scammels, P. J. Green Chem. 2005, 7, 9; (c)
Welton, T. Chem. Rev. 1999, 99, 2071; (d) Wasserscheid, P.; Keim, W. Angew.
Chem., Int. Ed. 2000, 39, 3772; (e) Wilkes, J. S. Green Chem. 2002, 4, 73; (f) Jain,
N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Tetrahedron 2005, 61, 1015; (g)
Ansari, I. A.; Joyasawal, S.; Gupta, M. K.; Yadav, J. S.; Gree, R. Tetrahedron Lett.
2005, 46, 7507; (h) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002,
102, 3667; (i) Bao, W.; Wang, Z. Green Chem. 2006, 8, 1028.
698 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 3.33 (d, 1H, J = 12.2 Hz, b-Ha),
.
3.79 (d, 1H, J = 12.2 Hz, b-Hb), 7.09–7.66 (m, 13Harom), 7.99 (t, 2H, J = 7.6 Hz,
Harom). 13C NMR (100 MHz; CDCl3/TMS): d 38.5, 62.1, 116.9, 123.3, 123.7, 124.8,
125.2, 126.0, 126.6, 127.5, 128.6, 129.3, 133.7, 137.8, 138.9, 198.8. C22H17NOS2:
C, 70.45; H, 4.56; N, 3.73. Found: C, 70.07; H, 4.28; N, 3.91. Compound 5e:
yellowish solid, yield 86%, mp 133–135 °C. IR (KBr) mmax 3051, 2988, 2856,
2238, 1697, 1580, 1451, 758, 697 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 0.83
.
(t, 3H, J = 7.1 Hz, CH3), 0.89 (t, 3H, J = 7.1 Hz, CH3), 1.38–1.43 (m, 4H, 2 Â CH2),
2.39 (t, 2H, J = 7.2 Hz, CH2), 2.47 (t, 2H, J = 7.2 Hz, CH2), 3.18 (d, 1H, J = 12.2 Hz,
b-Ha), 3.41 (d, 1H, J = 12.2 Hz, b-Hb), 7.52 (t, 1H, J = 7.7 Hz, Harom), 7.63 (t, 2H,
J = 7.4 Hz, Harom), 7.96 (t, 2H, J = 7.6 Hz, Harom). 13C NMR (100 MHz; CDCl3/TMS)
d: 15.1, 15.4, 22.4, 23.1, 32.0, 33.3, 35.8, 51.4, 116.8, 127.9, 128.5, 133.4, 138.8,
198.7. EIMS (m/z): 307 (M+). Anal. Calcd for C16H21NOS2: C, 62.57; H, 6.89; N,
4.56. Found: C, 62.95; H, 6.54; N, 4.25.
25. (a) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron Lett. 2007, 48, 4899.
and 8037; (b) Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Synlett 2008, 49, 529;
(c) Yadav, L. D. S.; Awasthi, C.; Rai, A. Tetrahedron Lett. 2008, 49, 6360; (d)
Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2009, 50, 1423; (e)
Yadav, L. D. S.; Patel, R.; Srivastava, V. P. Tetrahedron Lett. 2009, 50, 1335.
28. (a) Yang, M.-H.; Yan, G.-B.; Zheng, Y.-F. Tetrahedron Lett. 2008, 49, 6471; (b)
Chu, Y.; Deng, H.; Cheng, J. J. Org. Chem. 2007, 72, 7790; (c) Welton, T. In Ionic
Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH: Weinheim,
2002; p 100; (d) Ranu, B. C.; Saha, A.; Banerjee, S. Eur. J. Org. Chem. 2008, 519;
(e) Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363.
29. Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723.
26. General procedure for the synthesis of 1,2-acetoxysulfides 4:
A mixture of
[bmim]Br (3 mL), water (0.5 mL), and IBX (1 mmol) was stirred at rt for 5–
10 min followed by addition of BH alcohol 1 (1 mmol) and stirring at rt for 1–
2 h. After complete oxidation (monitored by TLC), CuI (0.05 mmol), imidazole
(0.05 mmol), organodisulfide 3, (0.5 mmol) and acetic acid (0.7 mL) were
added and the reaction mixture was stirred for a further 7–9 h at 50 °C under
air (Table 2). Then, it was diluted with saturated NaHCO3 solution (10 mL) and
extracted with ether (3 Â 10 mL). The combined organic layers were washed
30. (a) Lancaster, N. L.; Salter, P. A.; Welton, T.; Young, G. B. J. Org. Chem. 2002, 67,
8855; (b) Wang, J.-l.; Zhao, D.-S.; Zhou, E.-p.; Dong, Z. J. Fuel Chem. Technol.
2007, 35, 293; (c) Fang, D.; Cheng, J.; Gong, K.; Shi, Q.-R.; Zhou, X.-L.; Liu, Z.-L. J.
Fluorine Chem. 2008, 129, 108.
31. Mehdi, H.; Bodor, A.; Lantos, D.; Horváth, I. T.; de Vas, D. E.; Binnemans, K. J.
Org. Chem. 2007, 72, 517.