10.1002/chem.201701552
Chemistry - A European Journal
COMMUNICATION
Whereas the method proved successful with a range of
substrates, carboxylic acid substrates containing epimerisable a-
centers may not be compatible with the reaction conditions (See
SI).
Acknowledgements
We are grateful to the University of Nottingham for studentship
funding (C.J.S., A.S.B & M.-C.G.).
In summary, we have developed a new and robust protocol
for the synthesis of sterically hindered and electron-deficient
secondary and tertiary amides. The scalable protocol both
complements and improves upon existing methodology in terms
of substrate scope, ease of operation and efficiency. The
procedure, which exploits the unique properties of SuFEx click
chemistry, employs a new aromatic sulfonyl fluoride coupling
reagent, benzene-1,3-disulfonyl fluoride (7): an inexpensive,
bench stable and readily available reagent. The majority of the
amide products synthesised were obtained without the need for
additional purification, with the reagent waste removed by a
simple aqueous wash. Given the fidelity of the protocol, we
anticipate that our method will find wide application in the
synthesis of challenging secondary and tertiary amides for
several applications.
Keywords: • Acyl Fluoride • SuFEx Click Chemistry • Sterically
Hindered and Electron-Deficient Amides • Benzene-1,3-
disulfonyl fluoride
[1]
[2]
[3]
E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606–631.
S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479.
J. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res. Dev.
2016, 20, 140–177.
[4]
a) V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471–479, b) K. S.
Yang, A. E. Nibbs, Y. E. Türkmen, V. H. Rawal, J. Am. Chem. Soc. 2013,
135, 16050–16053; c) K.S. Yang, V.H. Rawal, J. Am. Chem. Soc. 2014,
136, 16148–16151; d) Y. Rao, X. Li, S.J. Danishefsky, J. Am. Chem. Soc.
2009, 131, 12924–12926; f) Z. Z. Brown, C. E. Schafmeister, J. Am.
Chem. Soc. 2008, 130, 14382–14383.ꢀ
[5]
[6]
[7]
[8]
[9]
a) G. Schäfer, C. Matthey, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51,
9173–9175; b) G. Schäfer, J. W. Bode, Chimia 2014, 68, 252–255.
J. Li, M. J. Lear, Y. Hayashi, Angew. Chem. Int. Ed. 2016, 55, 9060–
9064.
Experimental Section
a) C. A. G. N. Montalbetti, V. Falque, Tetrahedron 2005, 61, 10827–
10852; b) M. M. Joullié, K. M. Lassen, ARKIVOC 2010, 8, 189–250.
M. E. Due-Hansen, S. K. Pandey, E. Christiansen, R. Andersen, S. V. F.
Hansen, T. Ulven, Org. Biomol. Chem. 2016, 14, 430–433.
Synthesis of benzene-1,3-disulfonyl fluoride (7): To a solution of
potassium hydrogen bifluoride (24.0 g, 308 mmol) in H2O (65 mL)
was added a solution of benzene-1,3-disulfonyl chloride (18.4 g,
66.9 mmol) in MeCN (130 mL) and the reaction mixture stirred at
room temperature for 3 h. The product was extracted into EtOAc
(300 mL), washed with brine (2 x 300 mL), dried over anhydrous
MgSO4 and the solvent removed under reduced pressure. The
crude residue was filtered through a pad of silica (50% EtOAc in
petroleum ether) to give the target product as an off-white solid
(14.6 g, 90%); m.p. 39-42 °C [lit: 38-39 °C][21]; IR ⱱmax (CHCl3)/cm-
A number of one-pot amide coupling protocols for the synthesis of amino
acids involving acyl fluoride intermediates have been developed,
although many of the coupling reagents involved are expensive and
create undesirable side products: a) C. Kaduk, H. Wenschuh, M.
Beyermann, K. Forner, L. A. Carpino, M. Bienert, Lett. Pept. Sci. 1996,
2, 285–288; b) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, H.
Cheng, J. Org. Chem. 1999, 64, 7048–7054; c) L. A. Carpino, A. El-
Faham, J. Am. Chem. Soc. 1995, 117, 5401–5402; d) G. A. Olah, M.
Nojima, I. Kerekes, Synthesis 1973, 8, 487–488.
1
1: 3075, 1469, 1433, 832; H NMR (400 MHz, CDCl3) δH = 8.67
(app. t, J = 1.8 Hz, 1 H), 8.43 (dd, J = 8.0, 1.8 Hz, 2 H), 8.00 (app.
t, J = 8.0 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δC = 135.3 (d, 2JC-
F = 28 Hz), 134.8, 131.6, 128.6; 19F NMR (376 MHz, CDCl3) δ =
66.7 ppm.
[10] a) P. Sharma, A. D. Moorhouse, J. E. Moses, Synlett 2011, 16, 2384–
2386; b) G. Carbone, J. Burnley, J. E. Moses, Chem. Commun. 2013, 49,
2759–2761.
[11] J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2014, 53, 9430–9448.
[12] S. Li, P. Wu, J. E. Moses, K. B. Sharpless, Angew. Chem. Int. Ed. 2017,
56, 2903–2908.
Typical procedure for the preparation of N-benzylbenzamide
(13a): To a solution of benzoic acid (10) (1.00 mmol) and
benzene-1,3-disulfonyl fluoride (7) (242 mg, 1.00 mmol) in
anhydrous MeCN (3.6 mL) was added DIPEA (174 µL, 1.00
mmol) and DBU (75 µL, 0.50 mmol) and the reaction mixture
stirred at 50 °C for 1 h. Benzylamine (11a) (1.00 mmol) was added
and the reaction mixture stirred at 50 °C for a further 16 h. After
cooling to room temperature, the reaction mixture was extracted
with EtOAc (20 mL) and washed sequentially with sat. NaHCO3
(aq) (20 mL), 1.0M HCl(aq) (20 mL) and H2O (20 mL).The organic
layer was dried over anhydrous MgSO4, filtered and concentrated
under reduced pressure to give the product as a colourless solid
(204 mg, 96%); m.p. 103 °C [lit: 96-97 °C][22]; IR ⱱmax (CHCl3)/cm-
1: 3067, 3009, 1658, 1603, 1581, 1519, 1487, 1275, 1146, 1076;
1H NMR (400 MHz, CDCl3) δH = 7.83–7.78 (m, 2 H), 7.54–7.48 (m,
1 H), 7.47–7.41 (m, 2 H), 7.40–7.35 (m, 4 H), 7.35–7.28 (m, 1 H),
6.43 (br. s., 1 H), 4.67 (d, J = 5.6 Hz, 2 H); 13C NMR (101 MHz,
CDCl3) δC = 167.3, 138.2, 134.3, 131.5, 128.7, 128.5, 127.9,
127.6, 126.9, 44.1; HRMS (ESI+): calculated for C14H14N1O1
[M+H+]: m/z = 212.1070, m/z found 212.1081.
[13] J. Yatvin, K. Brooks, J. Locklin, Chem. Eur. J. 2016, 22, 16348-16354.
[14] A. Dondoni, A. Marra, Org. Biomol. Chem. 2017, 15, 1549-1553.
[15] W. Steinkopf, P. Jaeger, J. Prakt. Chem. 1930, 128, 63–79.
[16] Z. Yan, W. Tian, F. Zeng, Y. Dai, Tetrahedron Lett. 2009, 50, 2727–2729.
[17] The superior coupling ability of this reagent can be supported by the
highly electron-withdrawing potential of an m-SO2F subsitutent
compared to the other candidates examined (s-Hammett coefficient
+0.89).
[18] A number of acyl fluorides were prepared using the developed protocol
by omitting the amine addition step (see SI).
[19] S. Khare, A. S. Nagle, A. Biggart, Y. H. Lai, F. Liang, L. C. Davis, S. W.
Barnes,ꢀ C. J. N. Mathison, E. Myburgh, M. –Y. Gao, J. R. Gillespie, X.
Liu, J. L. Tan, M. Stinson, I. C. Rivera, J. Ballard, V. Yeh, T. Groessl, G.
Federe, H. X. Y. Koh, J. D. Venable, B. Bursulaya, M. Shapiro, P. K.
Mishra, G. Spraggon, A. Brock, J. C. Mottram, F. S. Buckner,ꢀ S. P. S.
Rao, B. G. Wen, J. R. Walker, T. Tuntland, V. Molteni, R. J. Glynne, F.
Supek, Nature 2016, 537, 229–233.
[20] A. Biggart, F. Liang, C. J. N. Mathison, V. Molteni, A. S. Nagle, F. Supek,
V. Yeh, US 2015/0175613 A1, 2015.
[21] W. Steinkopf, J. Prakt. Chem. 1927, 117, 1–82.
[22] N. Wang, X. Zou, J. Ma, F. Li, Chem. Commun. 2014, 50, 8303–8305.
This article is protected by copyright. All rights reserved.