10.1002/anie.202009335
Angewandte Chemie International Edition
RESEARCH ARTICLE
Figure 3. Substrate scope for C(sp3)-H oxygenations. Conditions for the
optional basic hydrolysis: Dioxane / NaOH (1 N) 1:1 at 80 °C for 2 hours. [a]
From (E)-1b. Starting from (Z)-1b, the yield is 72%. [b] Performed at 60 °C.
that this new reaction mode of transition metal nitrenoids will
provide untapped opportunities for the streamlined synthesis of
alcohols by regiocontrolled and stereocontrolled C(sp3)-H
oxygenation. Furthermore, cyclic carbonates are useful building
blocks for a variety of transformations.[24]
In preliminary experiments, we also started to investigate the
enantioselective version of this C-H functionalization. The class of
ruthenium catalysts used in this study, although containing only
achiral ligands, feature a stereogenic metal center which results
in overall chirality with a (left-handed helical twist of the
Acknowledgements
E.M. gratefully acknowledges funding from the Deutsche
Forschungsgemeinschaft (ME 1805/15-1). K.N.H is grateful to the
National Science Foundation (Grant CHE-1764328) for financial
support. Calculations were performed on the Hoffman2 cluster at
the University of California, Los Angeles, and the Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by the National Science Foundation (Grant
OCI-1053575). We thank Marcel Hemming for the synthesis of
some substrate intermediates.
bidentate ligands) and
(right-handed helical twist)
enantiomer.[18] Whereas for all preceding experiments a racemic
mixture of RuTES was employed, we next synthesized non-
racemic RuTES according to a recently developed chiral-
auxiliary-mediated method.[8] Indeed, when enantiomerically pure
-RuTES (2.0 mol%) was reacted with the N-
benzoyloxycarbamate 1ab under standard conditions, the cyclic
carbonate (R)-3a was obtained with an enantiomeric excess of
90:10 er (Figure 4). Interestingly, when the same nitrene
precursor 1ab was instead reacted with the enantiomerically pure
catalyst -RuCF3 (2.0 mol%) under identical reaction conditions,
the cyclic carbamate (S)-2a was obtained in 88% yield and with
89:11 er. Thus, depending on a single functional group at the
catalyst, either an enantioselective C-H oxygenation or
enantioselective C-H amination[19,20,21] can be obtained starting
from an identical nitrene precursor. A catalyst-dependent switch
between C-H amination and oxygenation was recently also
reported by Lu and coworkers in a photoredox dual catalysis
reaction from N-benzoyloxycarbamates.[22] White and coworkers
reported a catalyst-controlled diastereoselective allylic C-H
Keywords: C-H functionalization • oxygenation • nitrenoid •
enantioselective • ruthenium • chiral-at-metal
[1] a.) J. F. Hartwig, M. A. Larsen, ACS Cent. Sci. 2016, 2, 281-292; b.) T.
Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev.
2016, 45, 546-576; c.) H. M. L. Davies, D. Morton, ACS Cent. Sci. 2017, 3, 936-
943; d.) D. J. Abrams, P. A. Provencher, E. J. Sorensen, Chem. Soc. Rev. 2018,
47, 8925-8967; e.) S. K. Sinha, G. Zanoni, D. Maiti, Asian J. Org. Chem. 2018,
7, 1178-1192; f.) J. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed. 2018, 57, 62-
101; g.) C. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173-6214.
[2] a.) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417-424; b.) M. P.
Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704-724; c.) C.-
M. Che, V. K.-Y. Lo, C.-Y. Zhou, J.-S. Huang, Chem. Soc. Rev. 2011, 40, 1950-
1975; d.) M. Milan, M. Salamone, M. Costas, M. Bietti, Acc. Chem. Res. 2018,
51, 1984-1995.
amination versus oxygenation using
a
combination of
palladium(II) catalyst and Lewis acid.[23] However, experiments in
both reports were not performed in an enantioselective fashion
and occurred by different mechanisms.
[3] M. P. Doyle, M. Ratnikov, Y. Liu, Org. Biomol. Chem. 2011, 9, 4007-4016.
[4] a.) J. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911-
922; b.) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51,
7384-7395; c.) B. Darses, R. Rodrigues, L. Neuville, M. Mazurais, P. Dauban,
Chem. Commun. 2017, 53, 493-508; d.) D. Hazelard, P.-A. Nocquet, P.
Compain, Org. Chem. Front. 2017, 4, 2500-2521; e.) Y. Park, Y. Kim, S. Chang,
Chem. Rev. 2017, 117, 9247-9301; f.) P. F. Kuijpers, J. I. van der Vlugt, S.
Schneider, B. de Bruin, Chem. Eur. J. 2017, 23, 13819-13829; g.) T.
Shimbayashi, K. Sasakura, A. Eguchi, K. Okamoto, K. Ohe, Chem. Eur. J. 2019,
25, 3156-3180; h.) K. M. van Vliet, B. de Bruin, ACS Catal. 2020, 10, 4751-4769.
[5] a.) T. Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 2011, 50, 3362-3374;
b.) W. N. Oloo, L. Que, Jr., Acc. Chem. Res. 2015, 48, 2612-2621; c.) Y.-F.
Liang, N. Jiao, Acc. Chem. Res. 2017, 50, 1640-1653; d.) G. Olivo, O. Cussó,
M. Borrell, M. Costas, J. Biol. Inorg. Chem. 2017, 22, 425-452; e.) M. C. White,
J. Zhao, J. Am. Chem. Soc. 2018, 140, 13988-14009; f.) H. Sterckx, B. Morel,
B. U. W. Maes, Angew. Chem. Int. Ed. 2019, 58, 7946-7970.
[6] a.) H. Lebel, K. Huard, S. Lectard, J. Am. Chem. Soc. 2005, 127, 14198-
14199; b.) K. Huard, H. Lebel, Chem. Eur. J. 2008, 14, 6222-6230; c.) H. Lebel,
C. Spitz, O. Leogane, C. Trudel, M. Parmentier, Org. Lett. 2011, 13, 5460-5463.
Figure 4. Enantioselective intramolecular C(sp3)-H oxygenation and amination.
Standard reaction conditions: Catalyst (2 mol%), K2CO3 (3 equivalents), in
CHCl3 at room temperature for 16 hours.
[7] R. P. Reddy, H. M. L. Davies, Org. Lett. 2006, 8, 5013-5016.
[8] Y. Zheng, Y. Tan, K. Harms, M. Marsch, R. Riedel, L. Zhang, E. Meggers, J.
Am. Chem. Soc. 2017, 139, 4322-4325.
[9] Z. Zhou, S. Chen, J. Qin, X. Nie, X. Zheng, K. Harms, R. Riedel, K. N. Houk,
E. Meggers, Angew Chem. Int. Ed. 2019, 58, 1088-1093.
Conclusion
[10] S. Huh, S. Y. Hong, S. Chang, Org. Lett. 2019, 21, 2808-2812.
We here introduced a novel reactivity of transition metal
nitrenoids complexes, leading to C-H oxygenation instead of the
expected and established C-H nitrogenation. Metal catalyzed
intramolecular carbene and nitrene insertion reactions previously
only allowed for the formation of C-C and C-N bonds, respectively,
whereas the here reported work expands on this limitation.
Furthermore, we demonstrated that the reactivity of the transition
metal nitrenoid towards C-H oxygenation or nitrogenation can be
tuned simply by changing one substituent on the ruthenium
catalyst scaffold and also provides a handle for creating new
stereogenic centers in an enantioselective fashion. We believe
[11] a.) H. F. Sleiman, S. Mercer, L. McElwee-White, J. Am. Chem. Soc. 1989,
111, 8007-8009; b.) E. W. Harlan, R. H. Holm, J. Am. Chem. Soc. 1990, 112,
186-193; c.) P. J. Perez, P. S. White, M. Brookhart, J. L. Templeton, Inorg.
Chem. 1994, 33, 6050-6056; d.) V. Bizet, L. Buglioni, C. Bolm, Angew. Chem.
Int. Ed. 2014, 53, 5639-5642.
[12] S. M. Paradine, J. R. Griffin, J. Zhao, A. L. Petronico, S. M. Miller, M. C.
White, Nat. Chem. 2015, 7, 987-994.
[13] Y. Yang, I. Cho, X. Qi, P. Liu, F. H. Arnold, Nat. Chem. 2019, 11, 987-993.
[14] C. R. Flynn, J. Michl, J. Org. Chem. 1974, 39, 3442-3443.
[15] A. Varela-ꢀlvarez, T. Yang, H. Jennings, K. P. Kornecki, S. N. Macmillan,
K. M. Lancaster, J. B. C. Mack, J. Du Bois, J. F. Berry, D. G. Musaev, J. Am.
Chem. Soc. 2016, 138, 2327-2341.
This article is protected by copyright. All rights reserved.