10.1002/asia.201801190
Chemistry - An Asian Journal
FULL PAPER
[2]
[3]
a) J. W. Delord, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740–
4761; b) G.Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 2–20.
a) V. G. Zaitsev, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154-
13155; b) S. Y. Zhang, G. Chen, J. Am. Chem. Soc. 2013, 135,
12135−12141; c) G. He, G. Chen, Angew. Chem. Int. Ed. 2011, 50,
5192–5196; d) K. Chan, M. Miura, J. Q. Yu, Nat. Chem. 2014, 6, 146–
150; e) C. Wang, Y. S. Zhao, Angew. Chem. Int. Ed. 2014, 53, 9884–
9988.
Conclusions
In conclusion, we have developed an atom-efficient
strategy for the synthesis of α-pyrones via the oxidative
annulation of acrylic acid with alkynes under mild conditions by
employing Rhodium(III) as the catalyst. Various acrylic acids
were tolerated in this transformation, affording the corresponding
products in good to excellent yields. More impressively, the
sorbic acid was also compatible, leading to the corresponding α-
pyrones in good yields.
[4]
[5]
Z. Ren, G. B. Dong, J. Am. Chem. Soc. 2012, 134, 16991−16994.
a) S. Kozhushkov, L. Ackermann, Chem. Sci. 2013, 4, 886–896; b) G.
He, G. Chen, Acc. Chem. Res. 2016, 49, 635−645.
[6]
[7]
a) C. C. Yuan, Y. S. Zhao, Angew. Chem. Int. Ed. 2018, 57, 1277–
1281; b) G. B. Li, Y. S. Zhao, Org. Lett. 2018, 20, 2454−2458.
a) I. Lee, B. S. Yun, The Journal of Antibiotics 2011, 64, 349–359; b) A.
Rentsch, M. Kalesse, Angew. Chem. Int. Ed. 2012, 51, 11381–11384;
c) J. S. Yadav, K. K. Singarapu, J. Org. Chem. 2014, 79, 10762−10771.
G. P. McGlacken, I. Fairlamb, Nat. Prod. Rep. 2005, 22, 369–385.
a) R. Lira, J. R. Appleman, Bioorg. Med. Chem. Lett. 2007, 17, 6797–
6800; b) S. Thaisrivongs, K. D. Watenpaugh, J. Med. Chem. 1996, 39,
2400–2410; c) J. Prasad, T. K. Sawyer, J. Am. Chem. Soc. 1994, 116,
6989–6990.
[8]
[9]
Experimental Section
General Procedure for Rhodium(III)-Catalyzed Oxidative
Annulation of Acrylic Acid with Alkynes:
[10] a) T. M. Harris, C. M. Harris, J. Org. Chem. 1966, 31, 1032–1035; b) K.
G. Migliorese, S. I. Miller, J. Org. Chem. 1974, 39, 843–845; c) R. K.
Dieter, J. R. Fishpaugh, J. Org. Chem. 1983, 48, 4439–4441.
[11] A. Goel, V. J. Ram, Tetrahedron 2009, 65, 7865–7913.
[12] a) M. Itoh, M. Shimizu, T. Satoh, M. Miura, J. Org. Chem. 2013, 78,
11427−11432; b) Q. Li, Y. N. Yan, W. Yi, RSC Adv. 2013, 3, 23402–
23408; c) R. Prakash, K. Shekarrao, S. Gogoi, Org. Lett. 2015, 17,
5264−5267; d) E. Kudo, Y. Shibata, K. Tanaka, Chem. Eur. J. 2016, 22,
14190–14194; e) R. Mandal, B. Sundararaju, Org. Lett. 2017, 19,
2544−2547; f) X. G. Liu, H. G. Wang, ACS Catal. 2017, 7, 5078−5086;
g) T. T. Nguyen, L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed.
2018, 57, 1688–1691.
A mixture of 1 (0.20 mmol, 1.0 equiv), 2 (0.21 mmol, 1.05 equiv),
[RhCp*Cl2]2 (1.2 mg, 1 mol%), Ag2CO3 (27.6 mg, 0.10 mmol, 0.5
equiv) and 1 mL HFIP in a 15 mL glass vial under air
atmosphere was heated at 80 oC with vigorous stirring for 8
hours. The reaction mixture was then cooled to room
temperature, and filtered through celite. The filtrate was
concentrated in vacuo and purified by column chromatography
on silica gel (Ethyl acetate/Petroleum ether = 1:10 to 1:5) to give
the product α-Pyrone derivatives .
[13] a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 7, 1407–1409; b) K.
Ueura, T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362-5367.
[14] a) M. Shimizu, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74,
3478–3483; b) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org. Chem.
2009, 74, 6295–6298.
Acknowledgements
We gratefully acknowledge financial support from the Natural
Science Foundation of China (Nos. 21772139 and 21572149).
Project of Scientific and Technologic Infrastructure of Suzhou
(SZS201708) and the PAPD Project are also gratefully
acknowledged.
[15] a) L. Ackermann, K. Rauch, Org. Lett. 2012, 14, 930-933; b) M. Deponti,
S. I. Kozhushkov, D. S. Yufit and L. Ackermann, Org. Biomol. Chem.,
2013, 11, 142-148; c) S. Warratz, C. Kornhaaβ and L. Ackermann,
Angew. Chem. Int. Ed., 2015, 54, 5513-5517; d) Y. A. Qiu, C. Tian, L.
Massignan, L. Ackermann, Angew. Chem. Int. Ed., 2018, 57, 5818-
5822; e) Y. A. Qiu, W. J. Kong, J. Struwe and L. Ackermann, Angew.
Chem. Int. Ed., 2018, 57, 5828-5832.
Keywords: Rhodium(III)-catalyzed • oxidative annulation •
acrylic acid • α-pyrone • C–H functionalization
[16] Y. Yu, L. B. Huang, H. F. Jiang, Org. Lett. 2014, 16, 2146−2149.
[1]
a) F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826–834; b) R. Giri,
B. F. Shi, K. M. Engle, N. Maugelc, J. Q. Yu, Chem. Soc. Rev. 2009, 38,
3242–3272; c) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110,
1147–1169.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.