Li et al.
JOCArticle
donor-acceptor polarization;4 (2) expanding the azo-linked
aromatic ring from benzene to naphthalene and from thia-
zole to benzothiazole;5 and (3) extending the conjugated
NdN bond from monoazo to bisazo dyes to enhance
molecular π-resonance effects.6 The near-infrared absorbing
azo heterocycles have been found to be useful as optical data
carriers,4e,4f,6b thermal transfer recording media,4c,5a,5b,6c elec-
trophotographic toners,4b,4d,6f and semiconductor lasers.5d,6e
While numerous syntheses and applications of five-mem-
bered heterocyclic azo dyes have been reported, studies on
the relationship between molecular structure and color by
theoretical and experimental methods have also received
much interest. Most of the theoretical work addresses mo-
lecular donor-acceptor polarization,7-9 with relatively less
interest in the donor-acceptor polarization enhanced by
π-resonance effects of expanded aromatic rings and extended
NdN bonds.9 Experimental studies with X-ray crystallogra-
phy have been limited since it has been difficult to compare
differences in crystallographic structures and the resulting
change in color. In 2004, McNelis and co-workers10 success-
fully investigated the relationship between the donor-
acceptor polarization of azothiophenes and their colors
using X-ray crystallography. 2-(4-Diethylaminophenylazo)
significantly improved by the insertion of a vinylene group
between [4-di(hydroxyethyl)aminophenyl]azobenzene and
benzimidazole, the λmax was bathochromically shifted from
466 to 487 nm. This result indicated, not surprisingly, the
importance of π-resonance effects on the bathochromic
absorptions.
Most azo dyes are prepared via coupling of aromatic
diazonium salts with a nucleophilic component. While this
is true for 2,5-bisazathiophenes which are prepared from
thiophen-2-yl diazonium salts,12 the corresponding analo-
gues of 2-aminothiophene13 and 2,5-diaminothiophene14
require multicomponent condensations; pyrrole, on the
other hand, is more reactive than thiophene or even aniline
(which is 1020 times more reactive than benzene). Few 2,5-
bisazopyrroles have been reported15-17 and we report here
the coupling to pyrrole to produce 2,5-bis(arylazo)pyrroles.
A series of symmetric 2,5-bis(arylazo)-1H-pyrroles [2(a-d)]
and asymmetric 2,5-bis(arylazo)-1H-pyrroles [3(a-d)] have
been prepared and their maximum absorptions appear between
486 and 615 nm in dichloromethane, which are longer than that
of monoazopyrrole 1a (447 nm). When 2a was reacted with
iodomethane, symmetric 2,5-bis(arylazo)-1-methylpyrrole (5)
was obtained, which has a similar absorption at 563 nm.
However, when 2a was reacted with boron trifluoride, the
resulting boron-azopyrrole complex 4 displayed a near-infra-
red absorption at 754 nm. Comparisons of the X-ray crystal-
lographic structures of 1a, 2a, 2b, and 4 show that 4 is the most
planar and has the longest NdN bond distance (1.322 and
˚
thiophene has a NdN bond distance of 1.226 A; when the
strong electron-accepting tricyanovinyl group was introduced,
the resulting products, 2-(4-diethylamino)phenylazo-5-tricya-
novinylthiophene and 2-(4-tricyanovinyl)-phenylazo-5-die-
thylaminothiophene, exhibited NdN bond distances of 1.297
˚
˚
and 1.314 A, with maximum absorptions at 719 and 708 nm,
1.300 A), whereas 1a, 2a, and 2b have NdN bond distances at
1.253 [1a(I)], 1.286 [1a(II)], 1.289 [1a(III)], 1.283 (2a), and 1.293
respectively. Regrettably, the relationship between π-reso-
nance, planarity, and colors for five-membered heterocyclic
azo dyes has not been explored theoretically nor via X-ray
crystallography. In 2004, Centore and co-workers11 investi-
gated [4-di(hydroxyethyl)aminophenyl]azobenzenes contain-
ing a benzimidazole group. When molecular planarity was
˚
and 1.293 A (2b).
Results and Discussion
Synthesis of 2,5-Bisazopyrrole and Derivatives. Following
the general procedure to prepare azo dyes, substituted
phenyl diazonium salts were formed by reacting aromatic
amines [R0PhNH2: R0=4-N(CH3)2, 4-OCH3, 2-OH, H, 4-Br,
2-CO2H, 4-NO2] with sodium nitrite/aqueous HCl at tem-
peratures lower than 0 °C. Neutralization with pyridine and
treatment with a half equivalent of pyrrole in methanol gave
symmetric bisazopyrroles 2(a-d) [R0=4-N(CH3)2, 2-OH, 2-
CO2H, 4-NO2] in 61-82% yields (Scheme 1, path 1). Mono-
azopyrrole 1a was the major product when the 4-dimethyla-
minophenyl diazonium salt reacted with excess pyrrole under
the same conditions (Scheme 1, path 2). Further reactions of
1a with substituted phenyl diazonium salts provided asym-
metric bisazopyrroles 3(a-d) (R00=4-OCH3, H, 4-Br, 4-NO2)
(4) (a) Bello, K. A.; Griffiths, J. J. Chem. Soc., Chem. Commun. 1986,
1639. (b) Takiguchi, T. JP 63029761, 1988, CAN 109:83367. (c) JP 07214928,
1995, CAN 124:18488. (d) Maeda, S.; Mito, K. JP 08029993, 1996, CAN
124:356154. (e) Nishimoto, T.; Misawa, T.; Sugimoto, K.; Tsuda, T.; Umehara,
H.; Takuma, H. JP 09040659, 1997, CAN 126:218690. (f) Berneth, H.; Bruder,
F.-K.; Haese, W.; Hagen, R.; Hassenrueck, K.; Kostromine, S.; Landenberger, P.;
Oser, R.; Sommermann, T.; Stawitz, J.-W.; Bieringer, T. WO 2002080152, 2002,
CAN 137:286559. (g) Griffiths, J.; Lee, W. J. Adv. Colloid Sci. Technol. 2002, 5,
99.
(5) (a) Nakayama, N.; Komamura, T.; Tanaka, T. JP 05005969, 1993,
CAN 119:37592. (b) Kawakami, S.; Nakajima, A.; Maejima, K.; Komamura, T.
JP 07172059, 1995, CAN 123:343738. (c) Hall, N.; Patel, P. GB 2237804, 1991,
CAN 117:9806. (d) Emandi, A.; Serban, I.; Bandula, R. Dyes Pigm. 1999, 41, 63.
(e) Hattori, R. JP 11119415, 1999, CAN 130:345070.
(6) (a) Gregory, P. EP 280434, 1988, CAN 110:116654. (b) Umehara, H.;
Yanagimachi, M.; Taniguchi, Y.; Hirose, S.; Misawa, T.; Takuma, H. JP 08108625,
1996, CAN 125:127897. (c) Slark, A. T.; Fox, J. E. Polymer 1997, 38, 2989. (d)
Matsumoto, S.; Yagisawa, T.; Matsumoto, S.; Shimabukuro, K. JP 11269136,
1999, CAN 131:272843. (e) Hattori, R. JP 11119415, 1999, CAN 130:345070.
(f) Yoshida, S.; Nakamura, Y.; Takesawa, S. JP 2005099419, 2005, CAN
142:400497.
(7) (a) Albert, I. D. L.; Morley, J. O.; Pugh, D. J. Phys. Chem. 1995, 99,
8024. (b) Astrand, P.-O.; Sommer-Larsen, P.; Hvilsted, S.; Ramanujam, P.
S.; Bak, K. L.; Sauer, S. P. A. Chem. Phys. Lett. 2000, 325, 115. (c) Aastrand,
P.-O.; Ramanujam, P. S.; Hvilsted, S.; Bak, K. L.; Sauer, S. P. A. J. Am.
Chem. Soc. 2000, 122, 3482. (d) Astrand, P.-O.; Bak, K. L.; Sauer, S. P. A.
Chem. Phys. Lett. 2001, 343, 171.
(12) (a) Mitsubishi Chem. Ind. JP 57111356, 1982, CAN 98:18401. (b)
Niwa, T.; Himeno, K.; Maeda, S.; Shimizu, Y. DE 3301822, 1983, CAN
99:177495. (c) Ito, N.; Aiga, H.; Nishihara, M. JP 61028556, 1986, CAN
105:135409. (d) Etzbach, K. H.; Hansen, G.; Schefczik, E.; Reichelt, H. DE
3622297, 1988, CAN 108:169160. (e) Haehnke, M.; Mueller, J.; Boos, M.; Hett,
H. EP 305887, 1989, CAN 111:155818.
(13) Sabnis, R. W.; Rangnekar, D. W.; Sonawane, N. D. J. Heterocycl.
Chem. 1999, 36, 333.
(14) (a) Middleton, W. J.; Engelhardt, V. A.; Fisher, B. S. J. Am. Chem.
Soc. 1958, 80, 2822. (b) Skene, W. G.; Trefz, T. Polym. Prepr. 2004, 45, 563.
(15) Rozovskii, Y. T.; Savvin, S. B.; Khakimkhodzhaev, N.; Pachadzhanov,
D. N.; Yusupov, M. Dokl. Akad. Nauk Tadzh. SSR 1968, 11, 40.
(16) Wagner-Wysiecka, E.; Luboch, E.; Kowalczyk, M.; Biernat, J. F.
Tetrahedron 2003, 59, 4415.
(8) Morley, J. O. J. Phys. Chem. 1994, 98, 13177.
(9) (a) Morley, J. O.; Pugh, D. J. Chem. Soc., Faraday Trans. 1991, 87,
3021. (b) Morley, J. O.; Naji, M.; Hutchings, M. G.; Hall, N. J. Phys. Chem.
A 1998, 102, 5802.
(10) Moylan, C. R.; McNelis, B. J.; Nathan, L. C.; Marques, M. A.;
Hermstad, E. L.; Brichler, B. A. J. Org. Chem. 2004, 69, 8239.
(11) Carella, A.; Centore, R.; Fort, A.; Peluso, A.; Sirigu, A.; Tuzi, A.
Eur. J. Org. Chem. 2004, 12, 2620.
(17) (a) Savvin, S. B.; Rozovskii, Y. G.; Propistsova, R. F.; Likhonina,
E. A. Izv. Akad. Nauk SSSR, Ser. Khim 1969, 6, 1364. (b) Depraetere, S.;
Dehaen, W. Tetrahedron Lett. 2003, 44, 345. (c) Takahashi, M.; Suzuki, T.;
Ikemizu, H.; Ikesu, S. JP 2004307633, 2004, CAN 141:396980.
5238 J. Org. Chem. Vol. 74, No. 15, 2009