Journal of the American Chemical Society
Article
intermediate state in which helix α4 is in the obstructive
position and as a consequence the neck-linker is undocked.
Finally, in the final inhibitor-bound state, the switch II cluster is
in the permissive position allowing the neck linker to dock to
the motor domain from the initial perpendicular orientation
that involves the swinging of the neck-linker of about 32 Å.21
Although allosteric inhibitors such as ispinesib, monastrol, and
STLC as opposed to BI8 target two distinct sites on Eg5, these
complexes reveal the same intermediate state; in both
complexes, ADP-release is inhibited and the monoastral spindle
phenotype is observed in cells. Therefore, we hypothesize that
inhibitors like BI8, which target a different site, act through a
similar mechanism. Further investigations will be necessary to
provide insights into the sequence of conformational changes
occurring in the catalytic domain in support to our hypothesis.
during SPR experiments. This project was supported by CR-
UK.
REFERENCES
■
(1) Beer, T. M.; Goldman, B.; Synold, T. W.; Ryan, C. W.; Vasist, L.
S.; Van Veldhuizen, P. J., Jr.; Dakhil, S. R.; Lara, P. N., Jr.; Drelichman,
A.; Hussain, M. H.; Crawford, E. D. Clin. Genitourin. Cancer 2008, 6,
103−109.
(2) Burris, H. A., III; Jones, S. F.; Williams, D. D.; Kathman, S. J.;
Hodge, J. P.; Pandite, L.; Ho, P. T.; Boerner, S. A.; Lorusso, P. Invest.
New Drugs 2011, 29, 467−472.
(3) Wood, K. W.; Lad, L.; Luo, L.; Qian, X.; Knight, S. D.; Nevins,
N.; Brejc, K.; Sutton, D.; Gilmartin, A. G.; Chua, P. R.; Desai, R.;
Schauer, S. P.; McNulty, D. E.; Annan, R. S.; Belmont, L. D.; Garcia,
C.; Lee, Y.; Diamond, M. A.; Faucette, L. F.; Giardiniere, M.; Zhang,
S.; Sun, C. M.; Vidal, J. D.; Lichtsteiner, S.; Cornwell, W. D.;
Greshock, J. D.; Wooster, R. F.; Finer, J. T.; Copeland, R. A.; Huang,
P. S.; Morgans, D. J., Jr.; Dhanak, D.; Bergnes, G.; Sakowicz, R.;
Jackson, J. R. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 5839−5844.
(4) Blagden, S. P.; Molife, L. R.; Seebaran, A.; Payne, M.; Reid, A. H.;
Protheroe, A. S.; Vasist, L. S.; Williams, D. D.; Bowen, C.; Kathman, S.
J.; Hodge, J. P.; Dar, M. M.; de Bono, J. S.; Middleton, M. R. Br. J.
Cancer 2008, 98, 894−899.
(5) Yan, Y.; Sardana, V.; Xu, B.; Homnick, C.; Halczenko, W.; Buser,
C. A.; Schaber, M.; Hartman, G. D.; Huber, H. E.; Kuo, L. C. J. Mol.
Biol. 2004, 335, 547−554.
(6) Luo, L.; Parrish, C. A.; Nevins, N.; McNulty, D. E.; Chaudhari, A.
M.; Carson, J. D.; Sudakin, V.; Shaw, A. N.; Lehr, R.; Zhao, H.;
Sweitzer, S.; Lad, L.; Wood, K. W.; Sakowicz, R.; Annan, R. S.; Huang,
P. S.; Jackson, J. R.; Dhanak, D.; Copeland, R. A.; Auger, K. R. Nat.
Chem. Biol. 2007, 3, 722−726.
5. CONCLUSION
This structural characterization of the α4/α6 inhibitor-binding
site in Eg5, coupled with the previous identification of the
benzimidazole series of inhibitors, creates the opportunity for
both structure-based and ligand-based approaches to develop
novel inhibitor series for Eg5. The significant conformational
changes on ligand binding generate a well-defined “druggable”
pocket and the crystal structure now enables the application of
structure-based design and screening approaches. Importantly,
the development of inhibitors at this site has the potential for
delaying the onset of resistance to drugs targeting the ispinesib
site. This could be particularly relevant since mutants highly
resistant to ispinesib treatment have been observed in cell
culture and combination therapy is a well-established approach
to slow down the onset of resistance. With the existing
benizimidazole inhibitors demonstrating inhibition of the
ATPase activity in the nanomolar range, this is an exciting
possibility toward the development of new drug candidates.
Abbreviations. BI8, benzimidazole number 8; CENP-E,
centromere-associated protein E; ITC, isothermal titration
calorimetry; KSP, kinesin spindle protein; MT, microtubule;
SPR, Surface Plasmon Resonance.
(7) Parrish, C. A.; Adams, N. D.; Auger, K. R.; Burgess, J. L.; Carson,
J. D.; Chaudhari, A. M.; Copeland, R. A.; Diamond, M. A.; Donatelli,
C. A.; Duffy, K. J.; Faucette, L. F.; Finer, J. T.; Huffman, W. F.;
Hugger, E. D.; Jackson, J. R.; Knight, S. D.; Luo, L.; Moore, M. L.;
Newlander, K. A.; Ridgers, L. H.; Sakowicz, R.; Shaw, A. N.; Sung, C.
M.; Sutton, D.; Wood, K. W.; Zhang, S. Y.; Zimmerman, M. N.;
Dhanak, D. J. Med. Chem. 2007, 50, 4939−4952.
(8) Zhang, W. J. Phys. Chem. B 2011, 115, 784−795.
(9) Sheth, P. R.; Shipps, G. W., Jr.; Seghezzi, W.; Smith, C. K.;
Chuang, C. C.; Sanden, D.; Basso, A. D.; Vilenchik, L.; Gray, K.;
Annis, D. A.; Nickbarg, E.; Ma, Y.; Lahue, B.; Herbst, R.; Le, H. V.
Biochemistry 2010, 49, 8350−8358.
ASSOCIATED CONTENT
* Supporting Information
■
(10) Lahue, B. R.; Ma, Y.; Shipps, G. W., Jr.; Seghezzi, W.; Herbst, R.
Bioorg. Med. Chem. Lett. 2009, 19, 3405−3409.
S
Synthesis of BI8; cloning, expression and purification of Eg5
constructs; data collection and refinement; isothermal titration
calorimetry. This material is available free of charge via the
(11) Kabsch, W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66,
125−132.
(12) Vagin, A. A.; Isupov, M. N. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 2001, 57, 1451−1456.
(13) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr.,
Sect. D: Biol. Crystallogr. 1997, 53, 240−255.
AUTHOR INFORMATION
Corresponding Author
■
(14) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis,
I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-
Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R.
J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 213−221.
(15) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 486−501.
(16) Schuettelkopf, A. W.; van Aalten, D. M. Acta Crystallogr., Sect. D:
Biol. Crystallogr. 2004, 60, 1355−1363.
Present Address
†School of Chemical and Biotechnology, SASTRA University,
Tirumalaisamudram, Thanjavur 613401, Tamilnadu, India.
Author Contributions
‡These authors contributed equally.
(17) The PyMOL Molecular Graphics System, Version 1.5.0.4,
Notes
Schrodinger, LLC., 2010.
̈
The authors declare no competing financial interest.
(18) Luo, L.; Carson, J. D.; Dhanak, D.; Jackson, J. R.; Huang, P. S.;
Lee, Y.; Sakowicz, R.; Copeland, R. A. Biochemistry 2004, 43, 15258−
15266.
ACKNOWLEDGMENTS
■
We thank Diamond Light Source for access to beamlines I02
(MX6683) and I03 that contributed to the results presented
here. We are grateful to Prof. Alan Cooper for his insightful
comments on ITC and Dr. Marta Dozynkiewicz for her support
(19) Talapatra, S. K.; Schuttelkopf, A. W.; Kozielski, F. Acta
̈
Crystallogr., Sect. D: Biol. Crystallogr. 2012, 68, 1311−1319.
(20) Lad, L.; Luo, L.; Carson, J. D.; Wood, K. W.; Hartman, J. J.;
Copeland, R. A.; Sakowicz, R. Biochemistry 2008, 47, 3576−3585.
2271
dx.doi.org/10.1021/ja310377d | J. Am. Chem. Soc. 2013, 135, 2263−2272