Journal of the American Chemical Society
Page 4 of 6
project (B06005) of the Ministry of Education of China for
1
financial support.
2
3
4
REFERENCES
5
6
7
8
(1) For reviews, see: (a) Newhouse, T.; Baran, P. S.; Hoffmann, R.
W. Chem. Soc. Rev. 2009, 38, 3010. (b) Dénès, F.; Pérez-Luna, A.;
Chemla, F. Chem. Rev. 2010, 110, 2366. (c) Dong, Z.; Ren, Z.; Thomp-
son, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.
(2) For reviews, see: (a) Trost, B. M.; Van Vranken, D. L. Chem.
Rev. 1996, 96, 395. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003,
103, 2921. (c) Craig II, R. A.; Stoltz, B. M. Tetrahedron Lett. 2015, 56,
4670. (d) Weaver, J. D.; Recio III, A.; Grenning, A. J.; Tunge, J. A.
Chem. Rev. 2011, 111, 1846. (e) Koschker, P.; Breit, B. Acc. Chem. Res.
2016, 49, 1524. (f) Haydl, A. M.; Breit, B.; Liang, T.; Krische, M. J.
Angew. Chem., Int. Ed. 2017, 56, 11312.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Hata, G.; Takahashi, K.; Miyake, A. J. Org. Chem. 1971, 36,
2116. (b) Takahashi, K.; Miyake, A.; Hata, G. Bull. Chem. Soc. Jpn.
1972, 45, 1183.
(4) For hydroalkylation of dienes, see: (a) Baker, R.; Popplestone,
R. J. Tetrahedron Lett. 1978, 19, 3575. (b) Andell, O. S.; Bäckvall, J.-E.;
Moberg, C. Acta Chem. Scand. 1986, 40b, 184. (c) Trost, B. M.; Zhi, L.
Tetrahedron Lett. 1992, 33, 1831. (d) Leitner, A.; Larsen, J.; Steffens, C.;
Hartwig, J. F. J. Org. Chem. 2004, 69, 7552. (e) Yang, X.-H.; Dong, V.
M. J. Am. Chem. Soc. 2017, 139, 1774. For hydroalkylation of allenes,
see: (f) Yamamoto, Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc.
1994, 116, 6019. (g) Trost, B. M.; Gerusz, V. J. J. Am. Chem. Soc. 1995,
117, 5156. (h) Li, C.; Breit, B. J. Am. Chem. Soc. 2014, 136, 862. For
hydroalkylation of alkynes, see: (i) Kadota, I.; Shibuya, A.; Gyoung, Y.
S.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 10262. (j) Patil, N. T.;
Kadota, I.; Shibuya, A.; Gyoung, Y. S.; Yamamoto, Y. Adv. Synth.
Catal. 2004, 346, 800. (k) Cruz, F. A.; Chen, Z.; Kurtoic, S. I.; Dong,
V. M. Chem. Commun. 2016, 52, 5836. (l) Beck, T.; Breit, B. Org. Lett.
2016, 18, 124.
(5) (a) Trost, B. M.; Jäkel, C.; Plietker, B. J. Am. Chem. Soc. 2003,
125, 4438. (b) Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2017, 139,
1029. (c) Zhou, H.; Wang, Y.; Zhang, L.; Cai, M.; Luo, S. J. Am. Chem.
Soc. 2017, 139, 3631. (d) Beck, T. M.; Breit, B. Angew. Chem., Int. Ed.
2017, 56, 1903. (e) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson S. J. J.
Am. Chem. Soc. 2018, 140, 2761.
(6) For a palladium/proline-catalyzed ketone-alkyne coupling via
enamine intermediate, see: Yang, C.; Zhang, K.; Wu, Z.; Yao, H.; Lin,
A. Org. Lett. 2016, 18, 5332.
In summary, we have developed a protocol for highly regi-
oselective addition reactions between 1,3-dienes and simple
ketones mediated by a nickel catalyst with DTBM-SegPhos as
a ligand. A wide range of aromatic and aliphatic ketones
could be directly coupled with 1,3-dienes, providing syntheti-
cally useful γ,δ-unsaturated ketones in high yield and regi-
oselectivity. An asymmetric version of the reaction was also
realized with high enantioselectivity by using the novel chiral
ligand DTBM-HO-BIPHEP. Moreover, the chiral products of
the reaction are versatile building blocks in synthetic chemis-
try, as demonstrated by the synthesis of the bioactive com-
pound (R)-flobufen. Further studies will focus on elucidating
the reaction mechanism and on application of Ni-BIPHEP
catalysts to other enantioselective hydrofunctionalization
reactions.
ASSOCIATED CONTENT
Supporting Information
(7) Xiao, L.-J.; Cheng, L.; Feng, W.-M.; Li, M.-L.; Xie, J.-H.; Zhou,
Q.-L. Angew. Chem., Int. Ed. 2018, 57, 461.
(8) For reviews on nickel-catalyzed diene hydrofunctionalization,
see: (a) Kimura, M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173. (b)
RajanBabu, T. V.; Smith, C. R. Enantioselective Hydrovinylation of
Alkenes. Comprehensive Chirality; Carreira, E. M., Yamamoto, H.,
Eds.; Elsevier: London, 2012, 5, 355.
(9) No reaction was observed when a Pd or Rh catalyst was used under
the standard conditions.
(10) (a) Mo, F.; Dong, G. Science 2014, 345, 68. (b) Xing, D.; Dong,
G. J. Am. Chem. Soc., 2017, 139, 13664.
(11) Xie, J.-H.; Liu, X.-Y.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. An-
gew. Chem., Int. Ed 2011, 50, 7329.
(12) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.;
Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M. J.
Org. Chem. 1992, 57, 2768.
(13) (a) Jegorov, A.; Hušák, M.; Ondŕăcek, J.; Kratochvíl, B.;
Kuchař, M.; Bulej, P.; Gilar, M.; Tesărová, E. J. Fluorine Chem. 1997,
83, 111. (b) Trejtnar, F.; Král, R.; Pávek, P.; Wsól, V. Chirality 2003, 15,
724.
(14) Xiao, L.-J.; Fu, X.-N.; Zhou, M.-J.; Xie, J.-H.; Wang, L.-X.; Xu,
X.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2016, 138, 2957.
The Supporting Information is available free of charge on the
ACS Publications website at DOI: xxx
Experimental procedures, optimization, characterization
(PDF)
AUTHOR INFORMATION
Corresponding Author
*1120140207@mail.nankai.edu.cn
*qlzhou@nankai.edu.cn
ORCID
Li-Jun Xiao: 0000-0002-3998-3628
Qi-Lin Zhou: 0000-0002-4700-3765
Notes
The authors declare no competing financial interests.
(15) For ligand-to-ligand hydrogen transfer (LLHT) mechanism in
other nickel-catalyzed reactions, see: (a) Guihaumé, J.; Halbert, S.;
Eisenstein, O.; Perutz, R. N. Organometallics 2012, 31, 1300. (b) Bair,
J. S.; Schramm, Y.; Sergeev, A. G.; Clot, E.; Eisenstein, O.; Hartwig, J.
ACKNOWLEDGMENT
We thank the National Natural Science Foundation of China
(Nos. 21421001, 21325207, 21421062, 21532003) and the “111”
ACS Paragon Plus Environment