¨
DURUST et al./Turk J Chem
¨
on the phenyl ring there will be an increase in electron density, which may result in resonance delocalization of
the lone pairs on the N, O, and S atoms (N(CH3)2 , CH3 O, CH3 S) through the aromatic ring, thus reducing
their acidity to a remarkable extent. In the presence of electron-withdrawing groups (NO2 , CN, CF3) on the
phenyl ring, a reverse effect on pKa values is observed due to the substantial decrease in the electron density of
the amino nitrogen atom of the oxadiazolones mesomerically, thus causing an increase in the proticity of amino
hydrogens.
4. Conclusions
In this work, we clearly demonstrated the acidity measurements (pKa) of a series of oxadiazolones and 1,2,4,5-
oxathiadiazol-2-oxides potentiometrically in anhydrous methanol. In addition, excellent linear correlations
between pKa values and Hammett σp+ constants were established and the results were interpreted by taking
account of the electronic–mesomeric nature of the existing groups on the phenyl ring at the 3-position of the
title oxygen, nitrogen containing 5-membered heterocycles.
Acknowledgment
˙
We are grateful to Abant Izzet Baysal University Directorate of Research Project Commission for its financial
support (BAP Grant No: 2011.03.03.442).
References
1. Wermuth, C. G. In The Practice of Medicinal Chemistry; 2nd ed.; Wermuth, C. G., Ed., Academic Press: London,
UK, 2003.
2. Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. J. Med. Chem. 1996, 39, 5228–5235.
3. Boschelli, D. H.; Connor, D. T. U.S. Patent 5,114,958, May 19, 1992.
4. Dong, C. Z.; Ahamada-Himidi, A.; Plocki, S.; Aoun, D.; Touaibia, M.; Meddad-Bel Habich, N.; Huet, J.; Redeuilh,
C.; Ombetta, J. E.; Godfrold, J. J.; et al. Bioorg. Med. Chem. 2005, 13, 1989–2007.
5. Valgeirsson, J.; Nielsen, E.; Peters, D.; Mathiesen, C.; Kristensen, A. S.; Madsen, U. J. Med. Chem. 2004, 47,
6948–6957.
6. Schroeder, A.; Kotthaus, J.; Schade, D.; Clement, B.; Rehse, K. Archiv Pharm. 2010, 343, 9–16.
7. Clement, B.; Reeh, C.; Hungeling, H. Ger. Offen. 2009, DE 102008007381 A1 20090813.
8. Bolton, R. E.; Coote, S. J.; Finch, H.; Lowdon, A.; Pegg, N.; Vinader, M. V. Tetrahedron Lett. 1995, 36, 4471–4474.
9. Nardi, A.; Demnitz, J.; Grunnet, M.; Christophersen, P.; Jones, D. S.; Nielsen, E. O.; Stroebaek, D.; Madsen, L.
S. PCT Int. Appl. 2008 WO 2008135591 A1 20081113.
10. Kohara,Y.; Imamiya, E.; Kubo, K.; Wada, T.; Inada, Y.; Naka, T. Bioorg. Med. Chem. Lett. 1995, 5, 1903–1908.
11. Ellingboe, J. W.; Alessi, T. R.; Dolak, T. M.; Nguyen, T. T.; Tomer, J. D.; Guzzo, F. S.; Bagli, J. F.; McCaleb,
M. L. J. Med. Chem. 1992, 35, 1176–1183.
12. Fritz, J. S. Acid-Base Titrations in Non-Aqueous Solvents; Allyn and Bacon: Boston, USA, 1973.
13. Dewick, P. M. Essentials of Organic Chemistry: For Students of Pharmacy, Medicinal Chemistry and Biological
Chemistry; John Wiley & Sons: Chichester, West Sussex, UK, 2006.
14. Rochester, C. H. Acidity Functions, in Organic Chemistry, Ed. Blomquist, A. T. Academic Press, London, UK,
1970.
15. Gu¨ndu¨z, T.; Kılı¸c, E.; Atakol, O.; K¨oseog˘lu, F. Analyst 1989, 114, 475–477.
16. Akay, A.; Du¨ru¨st, N.; Du¨ru¨st, Y.; Kılı¸c, E. Anal. Chim. Acta 1999, 392, 343–346.
61