4494
D. Kumar et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4492–4494
References and notes
3j, a significant increase in activity and specificity was observed
against PaCa2 (1.4 M) cell line. A free hydroxyl group at the
para-position of C-2 phenyl ring is detrimental for the activity as
evident from the activity of compound 3k. Finally, we explored
the replacement of the aromatic group with an aliphatic substitu-
ent. The compound 3l with C-2 methyl group was moderately cyto-
l
1. Tan, T. M.; Chen, Y.; Kong, K. H.; Bai, J.; Li, Y.; Lim, S. G.; Ang, T. H.; Lam, Y.
Antivir. Res. 2006, 71, 7.
2. Gaonkar, S. L.; Rai, K. M. L.; Prabhuswamy, B. Eur. J. Med. Chem. 2006, 41, 841.
3. Aboraia, A. S.; Abdel-Rahman, H. M.; Mahfouz, N. M.; Gendy, M. A. Bioorg. Med.
Chem. Lett. 2006, 14, 1236.
4. Li, Y.; Liu, J.; Zhang, H.; Yang, X.; Liu, Z. Bioorg. Med. Chem. Lett. 2006, 16, 2278.
5. Khan, M. T.; Choudhary, M. I.; Khan, K. M.; Rani, M.; Rahman, A. U. Bioorg. Med.
Chem. 2005, 13, 3385.
6. Palmer, J. T.; Hirschbein, B. L.; Cheung, H.; McCarter, J.; Janc, J. W.; Yu, W. Z.;
Wesolowski, G. Bioorg. Med. Chem. Lett. 2006, 16, 2909.
7. Warrener, R. N. Eur. J. Org. Chem. 2000, 65, 3363.
8. Guan, M.; Bian, Z. Q.; Zhou, Y. F.; Li, F. Y.; Li, Z. J.; Huang, C. H. Chem. Commun.
2003, 2708.
9. Guimaraes,C. R.W.;Boger, D. L.;Jorgensen, W. L.J.Am.Chem. Soc.2005, 127, 17377.
10. Al-Talib, M.; Tastoush, H.; Odeh, N. Synth. Commun. 1990, 20, 1811.
11. Carlsen, P. H. J.; Jorgensen, K. B. J. Heterocycl. Chem. 1994, 31, 805.
12. Theocharis, A. B.; Alexandrou, N. E. J. Heterocycl. Chem. 1990, 27, 1685.
13. Liras, S.; Allen, M. P.; Segelstein, B. E. Synth. Commun. 2000, 30, 437.
14. Brown, P.; Best, D. J.; Broom, N. J. P.; Cassels, R.; Bhanlon, P. J.; Mitchell, T. J.;
Osborne, N. F.; Wilson, J. M. J. Med. Chem. 1997, 40, 2563.
toxic towards PaCa2 (145 lM) while it exhibited very poor activity
against other cell lines. When a trifluoromethyl substituent was
introduced at C-2 position, activity reduced significantly as shown
by compound 3m. Among the compounds synthesized and
screened for cytotoxic activity, compounds 3c, 3d and 3j exhibited
higher specificity and cytotoxic activity against different cancer
cell lines (IC50 values against MCF7 (1.0
PaCa2 (0.9 M); and PaCa2 (1.4 M)).
lM) PaCa2 (1.6 lM);
l
l
In conclusion, a series of diverse 5-(3-indolyl)-2-(substituted)-
1,3,4-oxadiazoles have been synthesized which represent a novel
class of potent and selective anticancer agents. Through SAR stud-
ies, we have found that compounds either with 4-pyridyl or 3-pyr-
idyl substitution were potent and selective. It is interesting to note
that the 3-pyridyl substitution exhibited selective cytotoxic activ-
ity against PaCa2 cancer cell line. Also, N-methylation of indole
ring nitrogen dramatically improved the cytotoxic activity. Studies
are being conducted to determine mode of action of 5-(30-indolyl)-
2-(substituted)-1,3,4-oxadiazoles, and further modification of
these compounds may successfully lead to development of a
potent anticancer agent.
15. Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34,
2060.
16. Short, F. W.; Long, L. N. J. Heterocycl. Chem. 1969, 6, 707.
17. Gabriel, N. V.; Gloria, M. M.; Zetel, V. D.; Javier, V. V.; Samuel, E.; Francisco, G.;
Emanuel, H.; Salvador, S. Bioorg. Med. Chem. 2007, 15, 5502.
18. Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. CA Cancer J
Clin. 2008, 58, 71.
19. Haskell, C. M. Cancer Treatment, 5th ed.; W.B. Saunders: Philadelphia, PA, 2001.
Chapter 1.
20. Eckhardt, S. Curr. Med. Chem. Anti Canc. Agents 2002, 2, 419.
21. Altmann, K. H. Curr. Opin. Chem. Biol. 2001, 5, 424.
22. Wartmann, M.; Altmann, K. H. Curr. Med. Chem. Anti Canc. Agents 2002, 2, 123.
23. O’Dwyer, M. E.; Druker, B. J. Curr. Cancer Drug Targets 2001, 1, 49.
24. Pettit, G. R.; Knight, J. C.; Herald, D. L.; Davenport, R.; Pettit, R. K.; Tucker, B. E.;
Schmidt, J. M. J. Nat. Prod. 2002, 65, 1793.
25. (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025; (b) Varma, R. S. Green Chem.
1999, 1, 43.
Acknowledgments
26. Synthesis of indolyl-1,3,4-oxadiazoles 3a–k: The indole-3-carboxaldehyde N-
acylhydrazone 1 (1 mmol) and BTI (1.2 mmol) were ground in a mortar and
pestle at room temperature for 10 min. During the admixing, reaction was
initiated and turned dark brown rapidly. The completion of reaction was
confirmed by TLC (7:3 hexane/ethylacetate). The reaction mixture was taken
into water and extracted with ethylacetate (2 ꢁ 5 mL). Organic phase was
dried over anhydrous sodium sulfate, and the solvent was distilled off under
reduced pressure. The residue was percolated through a bed of silica gel using
ethyl acetate/hexane (1/9, v/v) as eluent to afford the pure product 3a–k in
good yield. Compound 3a: 1H NMR (400 MHz, DMSO-d6): dH 11.22 (s, 1H, NH),
8.29 (dd, 1H, J = 6.08, 3.12 Hz), 8.17–8.13 (m, 2H), 8.02 (d, 1H, J = 2.92 Hz),
7.57–7.50 (m, 4H), 7.30 (dd, 2H, J = 6.10, 3.18 Hz). Calcd m/z for C16H11N3O:
261.0902, found: 262.1002 (M+H)+.
The authors acknowledge financial support from the University
Grants Commission, New Delhi (Project F. No. 32-216/2006). S.S. is
thankful to the Council of Scientific and Industrial Research, New
Delhi for Research Fellowship.
Supplementary data
Supplementary data associated with this article can be found, in