3786
A. C. Kasper et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3783–3786
Figure 5. Optimized conformations of truncated structures of 1, 11, and 13 (a) truncated structures (14–16). (b) Overlay I. (c) Overlay II: front view. (d) Overlay II: side view
(14 in black, 15 in red, 16 in blue, and tetrahydrofurans in green).
8. Semenza, G. L. Drug Discovery Today 2007, 12, 853.
9. Aebersold, D. M.; Burri, P.; Beer, K. T.; Laissue, J.; Djonov, V.; Greiner, R. H.;
Semenza, G. L. Cancer Res. 2001, 61, 2911.
10. Koukourakis, M. I.; Giatromanolaki, A.; Sivridis, E.; Simopoulos, C.; Turley, H.;
Talks, K.; Gatter, K. C.; Harris, A. L. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 1192.
11. (a) Kung, A. L.; Wang, S.; Klco, J. M.; Kaelin, W. G.; Livingston, D. M. Nat. Med.
To further characterize the effect of tetrahydrofuran conforma-
tion of 1, 11, and 13 on the HIF-1 inhibition, we optimized the con-
formations of truncated structures22 using density functional
theory (B3LYP)23 at the 6-31G level (GAUSSIAN 03, D.02 version24).
*
As shown in Figure 5, compound 14 adopted a nearly linear confor-
2002, 6, 1335; (b) Zhang, X.; Kon, T.; Wang, H.; Li, F.; Huang, Q.; Rabbani, Z. N.;
mation, but compound 15 adopted a bent-shaped conformation
remarkably different from that of 14. However, in one of the two
possible orientations for 16 (Overlay II), the conformation was rel-
atively close to that of 14 (Fig. 5c and d)25 indicating that the lin-
ear-shaped conformation resulting from the 2,5-trans-
configuration is critical to the HIF-1 inhibition. Thus, designing a li-
gand that mimics the overall conformation of 1 may improve the
potency and selectivity toward the hypoxia signaling pathway.
Kirkpatrick, J. P.; Vujaskovic, Z.; Dewhirst, M. W.; Li, C. Y. Cancer Res. 2004, 64,
8139; (c) Moeller, B. J.; Cao, Y.; Li, C. Y.; Dewhirst, M. W. Cancer Cell 2004, 5,
429.
12. (a) Giaccia, A.; Siim, B. G.; Johnson, R. S. Nat. Rev. Drug Disc. 2003, 10, 803; (b)
Lin, X.; David, C. A.; Donnelly, J. B.; Michaelides, M.; Chandel, N. S.; Huang, X.;
Warrior, U.; Weinberg, F.; Tormos, K. V.; Fesik, S. W.; Shen, Y. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 174; (c) Zhang, H.; Qian, D. Z.; Tan, Y. S.; Lee, K.; Gao, P.;
Ren, Y. R.; Rey, S.; Hammers, H.; Chang, D.; Pili, R.; Dang, C. V.; Liu, J. O.;
Semenza, G. L. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19579.
13. (a) Rao, K. V.; Alvarez, F. M. Tetrahedron Lett. 1983, 24, 4947; (b) Hodges, T. W.;
Hossain, C. F.; Kim, Y.-P.; Zhou, Y.-D.; Nagle, D. G. J. Nat. Prod. 2004, 67, 767; (c)
Hossain, C. F.; Kim, Y.-P.; Baerson, S. R.; Zhang, L.; Bruick, R. K.; Mohammed, K.
A.; Agarwal, A. K.; Nagle, D. G.; Zhou, Y.-D. Biochem. Biophys. Res. Commun.
2005, 333, 1026.
14. (a) Moeller, B. J.; Dreher, M. R.; Rabbani, Z. N.; Schroeder, T.; Cao, Y.; Li, C. Y.;
Dewhirst, M. W. Cancer Cell 2005, 8, 99; (b) Moeller, B. J.; Batinic-Haberle, I.;
Spasojevic, I.; Rabbani, Z. N.; Anscher, M. S.; Vujaskovic, Z.; Dewhirst, M. W. Int.
J. Radiat. Oncol. Biol. Phys. 2005, 63, 545; (c) Viola, R. J.; Provenzale, J. M.; Li, F.;
Li, C. Y.; Yuan, H.; Tashjian, J.; Dewhirst, M. W. Am. J. Roentgenol. 2008, 191,
1779; (d) Tarnawski, A. S.; Jones, M. K. J. Mol. Med. 2003, 81, 627; (e)
Macpherson, G. R.; Figg, W. D. Cancer Biol. Ther. 2004, 3, 503; (f) Dang, D. T.;
Chen, F.; Gardner, L. B.; Cummins, J. M.; Rago, C.; Bunz, F.; Kantsevoy, S. V.;
Dang, L. H. Cancer Res. 2006, 66, 1684.
In summary, we have shown that 1 downregulated the HIF-1
a
expression and inhibited the secretion of VEGF. We have also dem-
onstrated that the 2,3-cis-3,4-trans-4,5-cis-configuration of the tet-
rahydrofuran is critical to the HIF-1 inhibition of 1. This
conformation–activity relationship study may help to identify
structural motifs required for HIF-1 inhibition and allow structural
modifications to increase specificity and decrease off-target effects.
Acknowledgments
15. Kim, H.; Wooten, C. M.; Park, Y.; Hong, J. Org. Lett. 2007, 9, 3965.
16. Kim, H.; Baker, J. B.; Lee, S.-U.; Park, Y.; Bolduc, K. L.; Park, H.-B.; Dickens, M. G.;
Lee, D.-S.; Kim, Y.-C.; Kim, S. H.; Hong, J. J. Am. Chem. Soc. 2009, 131, 3192.
17. Kim, H.; Kasper, A. C.; Moon, E. J.; Park, Y.; Wooten, C. M.; Dewhirst, M. W.;
Hong, J. Org. Lett. 2009, 11, 89.
We thank Dr. Chuan-Yuan Li (Department of Radiation Oncol-
ogy, University of Colorado Health Sciences Center) for the 4T1-
ODD-Luc. This work was supported by grants from Duke University
(J.H.), Duke Chemistry Undergraduate Summer Research Program
(Y.P.), and National Institutes of Health (NIH PO1 CA42745 and
NIH/NCI CA40355 to M.W.D; NIH R01GM61870-09 to W.Y.). H.K.
gratefully acknowledges the Korea Research Foundation Grant
funded by the Korean Government (MOEHRD) (KRF-2006-352-
E00028) for a postdoctoral fellowship.
18. Wang, G. L.; Semenza, G. L. Blood 1993, 82, 3610.
19. For 11: 1H NMR (400 MHz, CDCl3) d 6.80–7.09 (m, 12 H), 5.13 (d, J = 8.4 Hz, 1
H), 4.63 (d, J = 8.0 Hz, 1 H), 4.62 (d, J = 8.0 Hz, 1 H), 4.42 (d, J = 9.2 Hz, 1 H),
4.06–4.14 (m, 2 H), 4.09 (br s, 2 H), 3.85–3.92 (m, 18 H), 2.23–2.30 (m, 1 H),
1.76–1.84 (m, 1 H), 1.16 (d, J = 6.0 Hz, 3 H), 1.15 (d, J = 6.0 Hz, 3 H), 1.08 (d,
J = 6.4 Hz, 3 H), 0.67 (d, J = 7.2 Hz, 3 H); LRMS (FAB) found 732.4 [calcd for
C42H52O11 (M)+ 732.4].
20. For 13: 1H NMR (400 MHz, CDCl3) d 6.96–7.01 (m, 4 H), 6.91 (s, 2 H), 6.90 (dd,
J = 8.4, 1.2 Hz, 4 H), 6.81 (d, J = 8.0 Hz, 2 H), 4.65 (d, J = 9.2 Hz, 2 H), 4.62 (d,
J = 8.4 Hz, 2 H), 4.05–4.13 (m, 4 H), 3.92 (s, 6 H), 3.86 (s, 6 H), 3.85 (s, 6 H), 1.78–
1.81 (m, 2 H), 1.14 (d, J = 6.4 Hz, 6 H), 1.06 (d, J = 5.6 Hz, 6 H); HRMS (FAB)
found 732.3492 [calcd for C42H52O11 (M)+ 732.3510].
Supplementary data
Supplementary data associated with this article can be found, in
21. Li, F.; Sonveaux, P.; Rabbani, Z. N.; Liu, S.; Yan, B.; Huang, Q.; Vujaskovic, Z.;
Dewhirst, M. W.; Li, C. Y. Mol. Cell 2007, 26, 63.
22. To avoid any unnecessary complications and/or exaggeration by the flexible
side chains, truncated structures of 1, 11, and 13 were used instead of the full
structures. Initial geometries were determined by conformational search based
on molecular mechanics (MMFF).
References and notes
1. Semenza, G. L.. Nat. Rev. Cancer 2003, 56, 721.
23. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785; (b) Vosko, S.; Wilk, L.;
Nusair, M. Can. J. Phys. 1980, 58, 1200; (c) Becke, A. D. Phys. Rev. A 1988, 38,
3098; (d) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
2. Bertout, J. A.; Patel, S. A.; Simon, M. C. Nat. Rev. Cancer 2008, 12, 967.
3. Wang, G. L.; Jiang, B. H.; Rue, E. A.; Semenza, G. L. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 5510.
24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.,
et al GAUSSIAN 03, Revision D.02; Gaussian: Wallingford, CT, 2004.
4. Flamme, I.; Frolich, T.; Risau, W. Mol. Pharmacol. 2006, 70, 1469.
5. Lisy, K.; Peet, D. J. Cell Death Differ. 2008, 15, 642.
6. Vaupel, P. Semin. Radiat. Oncol. 2004, 14, 198.
25. Optimization of the full structures of 1, 11, and 13 using density functional
7. (a) Brizel, D. M.; Sibley, G. S.; Prosnitz, L. R.; Scher, R. L.; Dewhirst, M. W. Int. J.
Radiat. Oncol. Biol. Phys. 1997, 38, 285; (b) Hockel, M.; Schlenger, K.; Aral, B.;
Mitze, M.; Schaffer, U.; Vaupel, P. Cancer Res. 1996, 56, 4509.
*
theory (B3LYP) at the 6-31G level provided the same conclusion (see
Supplementary data for details).