10.1002/anie.201916385
Angewandte Chemie International Edition
COMMUNICATION
[1]
a) Z. Wang in Experimental and Kinetic Modeling Study of
cyclohexane and its Monoalkylated Derivatives Combustion, Vol1,
Springer, Singapore, 2018; b) C. J. Chuck, J. Donelly, Appl. Energy
2014, 118, 83-91.
As expected, the hydrodeoxygenation of the benzylic alcohol
was favored over the non-benzylic, resulting in high amounts
of 11a (50%) compared to 1-cyclohexylbutanol (8%). In the
case of substrate 17, only low mass balances were observed
indicating probably competing acid-mediated condensation
reactions of the enone substrate. All the substrates were
efficiently hydrodeoxygenated at 175°C to give the
corresponding alkanes in excellent yields (97-99%). In
agreement with what was previously observed for substrate 6,
the methoxy group of substrate 17 was partially cleaved at
175 °C (Entry 7). Using biomass derived 4-(tetrahydrofuran-2-
yl)butan-2-ol (18, obtained from the complete hydrogenation of
furfuralacetone) as substrate, only various dimers were
obtained when performing the reaction at 100°C. However, the
substrate was efficiently hydrodeoxygenated at 175°C,
producing a mixture of 2-butyltetrahydrofuran (18b), 2-
propyltetrahydro-2H-pyran (18c), octanol and octane (Entry 8).
Interestingly, these products are currently discussed as
potential alternative fuels and fuel additives.[24]
[2]
[3]
G. B. Wayton, P. Trefonas, S. Coley, T. Kurihara, Coating
composition for use with an overcoated photoresist, 2015,
US8927681B2.
a) K. Hirata, H. Ookawa, Compounds having dihydrophenanthrene
structures, liquid crystal compositions containing them, liquid crystal
displays, 2012, WO 2012086437; b) K. Yamazaki, T.
Shimoyama, Photosensitive resin compositions, cured films
therefrom, forming method of the cured films, and organic
electroluminescent displays or liquid crystal displays therewith, 2014,
WO 2014050730.
[4]
a) Janssen Pharmaceutica N.V., Quinoline-derived amide
modulators of vanilloid VR1 receptor, and their preparation,
pharmaceutical compositions, and methods of use in the treatment of
pain,
inflammatory,
and
pulmonary
conditions,
2004,
WO 2004069792; b) T. Nakajima, N. Hayashi, K. Ishizawa, Y.
Tsuzaki, R. Iwamura, K. Tsuboike, PDE7 inhibitor comprising bicyclic
nitrogenated heterocyclic compound, 2018, WO 2018038265; c) J. F.
Callahan, J. Kerns, P. Li, T. Li, B. W. McCleland, H. Nie, J. E. Pero,
T. G. Davies, M. Grazia Carr, C. M. Griffiths-Jones, T. D. Heightman,
D. Norton, M. L. Verdonk, A. J.-A. Woolford, H. M. G. Willems,
Biarylpyrazoles as NRF2 regulators and their preparation, 2017,
WO 2017060854.
In conclusion, we show that immobilizing Rh nanoparticles on
a
triphenylphosphonium-based
SILP
produces
a
Rh@SILP(Ph3-P-NTf2) catalyst
possessing
excellent
properties for the hydrogenation and hydrodeoxygenation of a
wide range of aromatic ketones with various substituents. The
required bifunctionality is enabled by a specific interaction
between the Rh NPs and the SILP(Ph3-P-NTf2)) support,
presumably leading to the formation of acidic Rh fluoride
[5]
a) H. Miyamura, A. Suzuki, T. Yasukawa, S. Kobayashi, J. Am. Chem.
Soc. 2018, 140, 11325-11334; b) T. Yu, J. Wang, X. Li, X. Cao, H.
Gu, ChemCatChem 2013, 5, 2852-2855; c) F. Lu, J. Liu, J. Xu, J. Mol.
Catal. A: Chem. 2007, 271, 6-13; d) S.-L. Tan, G.-B. Liu, X. Gao, T.
Thiemann, J. Chem. Res. 2009, 1, 5-7; e) B. Leger, A. Denicourt-
Nowicki, H. Olivier-Bourbigou, A. Roucoux, Inorg. Chem. 2008, 47,
9090-9096.
species.
Using Rh@SILP(Ph3-P-NTf2),
acetophenone
derivatives were readily hydrodeoxygenated under mild
conditions. For non-benzylic ketones, the product distribution
could be switched with high selectivity between the
hydrogenated and hydrodeoxygenated products simply by
tuning the temperature. The flexibility and modularity of the
molecular approach used to prepare NPs@SILP catalysts
allows for the assembly of the exact key components required
to achieve this unique reactivity. This opens the way to an
efficient production of highly valuable cyclohexane derivatives
from readily available aromatic ketones.
[6]
[7]
a) E. H. White, R. W. Darbeau, Y. Chen, S. Chen, D. Chen, J. Org.
Chem. 1996, 61, 7986-7987; b) E. Anslyn, K. J. Wallace, R. Hanes,
J. Morey, K. V. Kilway, J. Siegel, Synthesis 2005, 12, 2080-2083; c)
S. Yamabea, S. Yamazaki, J. Phys. Org. Chem. 2009, 22, 1094-1103.
a) Z. Chen, W. Chen, T. Tong, A. Zeng, J. Mol. Catal. A: Chem. 2015,
396, 231-238; b) G. Bai, J. Han, H. Zhang, C. Li, X. Lan, F. Tian, Z.
Zhao, H. Jin, RSC Adv. 2014, 4, 27116-27121; c) A. Perrier, M. Keller,
A.-M. Caminade, J. P. Majoral, A. Ouali, Green Chem. 2013, 15,
2075-2080; d) O. Kwon, S. Park, G. Deo, Chem. Comm. 2007, 40,
4113-4115.
[8]
[9]
a) A. Rahimi, A. Azarpira, H. Kim, J. Ralph, S. S. Stahl, J. Am. Chem.
Soc. 2013, 135, 6415-6418; b) A. Rahimi, A. Ulbrich, J. J. Coon, S.
S. Stahl, Nature 2014, 515, 249-252.
Acknowledgements
a) C. Schafer, C. J. Ellstrom, H. Cho, B. Torok, Green Chem. 2017,
19, 1230-1234; b) S. Itagaki, N. Matsuhashi, K. Taniguchi, K.
Yamaguchi, N. Mizuno, Chem. Lett. 2014, 43, 1086-1088; c) J. Wang,
Y. Zhang, M. Zhang, Z. Wang, M. Zhang, Catal. Today 2018, 314,
164-169.
The authors acknowledge financial support by the Max Planck
Society and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany´s Excellence
Strategy
–
Exzellenzcluster 2186 „The Fuel Science
[10] a) Y. V. Popov, V. M. Mokhov, D. N. Nebykov, S. E. Latyshova, K. V.
Shcherbakova, A. O. Panov, Kinet. Catal. 2018, 59, 444-449; b) D.
Jovanovic, R. Radovic, L. Mares, M. Stankovic, B. Markovic, Catal.
Today 1998, 43, 21-28; c) S.-C. Qi, L. Zhang, H. Einaga, S. Kudo, K.
Norinaga, J.-I. Hayashi, J. Mater. Chem. A 2017, 5, 3948-3965.
[11] a) X. Cui, A.-E. Surkus, K. Junge, C. Topf, J. Radnik, C.
Kreyenschulte, M. Beller, Nat. Commun. 2016, 7, 11326; b) P. Kluson,
L. Cerveny, Appl. Catal., A 1995, 128, 13-31; c) A. Bordet, L.-M.
Lacroix, P.-F. Fazzini, J. Carrey, K. Soulantica, B. Chaudret, Angew.
Chem., Int. Ed. 2016, 55, 15894-15898; d) F. Su, L. Lv, F. Y. Lee, T.
Liu, A. I. Cooper, X. S. Zhao, J. Am. Chem. Soc. 2007, 129, 14213-
14223.
Center“ ID: 390919832.. Furthermore, the authors would like
to thank Teresa Stamm for BET absorption measurements,
Alina Jakubowski, Annika Gurowski and Justus Werkmeister
for GC and GC-MS measurements, Norbert Pfänder (MPI for
Chemical Energy Conversion, Mülheim an der Ruhr), Adrian
Schlüter (MPI for Kohlenforschung, Mülheim an der Ruhr) for
TEM analysis.
Keywords: Hydrodeoxygenation • Ionic liquids • Nanoparticles
• Rhodium • SILP
[12] a) G. Miguel, T. T. C. Nguyet, N. Sebastien, D.-N. Audrey, H. Frederic,
R. Alain, M. Eric, P. Karine, Curr. Org. Chem. 2013, 17, 364-399; b)
W. Alsalahi, W. Tylus, A. M. Trzeciak, ChemCatChem 2018, 10,
This article is protected by copyright. All rights reserved.