increase in protein binding is attributed to the formation of
imines with the aldehydes on the film surface,13 although
the C1s XPS signal for aldehydes at 288 eV was at the noise
level (Fig. 2) due to the low density and the presence of
22 other carbon atoms in the molecule. In fact, the C1s signal
(blue curve in Fig. 2) was obtained on the sample that
absorbed 1.1% fibrinogen. Yet, the carbonyl signals at
288 eV and 289 eV were also at the noise level. In a relevant
study, Leggett and co-workers performed nanopatterning with
photochemical oxidation of thiolate monolayers terminated
with a short OEG (EG3) on gold substrates. A high density
of aldehydes and OCQO species were observed by XPS, likely
as a result of exposure of the films to UV light in air which
generates a high concentration of oxy radicals.13
2 (a) M. Bergh, K. Magnusson, J. L. G. Nilsson and A. T. Karlberg,
Contact Dermatitis, 1998, 39, 14; (b) F. Currie, M. Andersson and
K. Holmberg, Langmuir, 2004, 20, 3835; (c) A. T. Karlberg,
A. Bodin and M. Matura, Contact Dermatitis, 2003, 49, 241.
3 A. Bodin, M. Linnerborg, J. L. G. Nilsson and A. T. Karlberg,
Chem. Res. Toxicol., 2003, 16, 575.
4 (a) C. Decker and J. Marchal, Makromol. Chem., 1973, 166, 155;
(b) G. Gallet, S. Carroccio, P. Rizzarelli and S. Karlsson, Polymer,
2002, 43, 1081; (c) S. Morlat and J. L. Gardette, Polymer, 2001, 42,
6071.
5 (a) L. Yang, F. Heatley, T. G. Blease and R. I. G. Thompson, Eur.
Polym. J., 1996, 32, 535; (b) O. A. Mkhatresh and F. Heatley,
Macromol. Chem. Phys., 2002, 203, 2273; (c) O. A. Mkhatresh and
F. Heatley, Polym. Int., 2004, 53, 1336.
6 (a) C. Backtorp, A. Borje, J. L. G. Nilsson, A. T. Karlberg,
P. O. Norrby and G. Nyman, Chem.–Eur. J., 2008, 14, 9549;
(b) T. S. Dibble, Chem. Phys. Lett., 2002, 355, 193.
7 (a) M. C. Shen, L. Martinson, M. S. Wagner, D. G. Castner,
B. D. Ratner and T. A. Horbett, J. Biomater. Sci., Polym. Ed.,
2002, 13, 367; (b) N. T. Flynn, T. N. T. Tran, M. J. Cima and
R. Langer, Langmuir, 2003, 19, 10909; (c) D. W. Branch,
B. C. Wheeler, G. J. Brewer and D. E. Leckband, IEEE Trans.
Biomed. Eng., 2000, 47, 290; (d) K. Jans, K. Bonroy, R. De Palma,
G. Reekmans, H. Jans, W. Laureyn, M. Smet, G. Borghs and
G. Maes, Langmuir, 2008, 24, 3949; (e) E. Ostuni, R. G. Chapman,
R. E. Holmlin, S. Takayama and G. M. Whitesides, Langmuir,
2001, 17, 5605; (f) S. Y. Hou, E. A. Burton, R. L. Wu, Y. Y. Luk
and D. C. Ren, Chem. Commun., 2009, 1207; (g) Y. Y. Luk,
M. Kato and M. Mrksich, Langmuir, 2000, 16, 9604;
(h) C. M. Nelson, S. Raghavan, J. L. Tan and C. S. Chen,
Langmuir, 2003, 19, 1493.
In conclusion, we demonstrated for the first time that
internal OEG hydroperoxides are decomposed mainly through
non-radical pathways to alcohols and esters. When stored in
an aqueous solution (PBS buffer), OEG monolayers remained
highly protein-resistant for at least a month at 37 1C. They
were easier to degrade when stored in air. This observation can
be rationalized by a proposed mechanism suggesting that
oxidation on the surface of OEG monolayers by reactive oxy
radicals generates mostly alcohols and aldehydes. The mechanism
may be applied to other processes involving oxy radicals, such
as photooxidation,13 electro-chemical oxidation,14 and inter-
actions with polymorpho-nuclear leukocytes that secrete
reactive oxy radicals.7a
8 T. Ogura, A. Miyoshi and M. Koshi, Phys. Chem. Chem. Phys.,
2007, 9, 5133.
9 W. V. Turner and S. Gab, J. Org. Chem., 1992, 57, 1610.
10 C. M. Yam, J. M. Lopez-Romero, J. H. Gu and C. Z. Cai, Chem.
Commun., 2004, 2510.
11 K. Suma, Y. Sumiyoshi and Y. Endo, Science, 2006, 311, 1278.
12 A. A. Gorman, M. A. J. Rodgers, Singlet Oxygen, ed.
J. C. Scaiano, CRC Press, Boca Raton, Florida, 1989, vol. II,
p. 229.
We thank The Welch Foundation, the NSF CAREER
CTS-0349228 and DMR-0706627 for supporting this work.
GQ thanks the NIH Nanobiology Training Program
(5R90 DK71504-3) for a fellowship.
13 (a) R. E. Ducker, S. Janusz, S. Q. Sun and G. J. Leggett, J. Am.
Chem. Soc., 2007, 129, 14842; (b) M. Montague, R. E. Ducker,
K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies and
G. J. Leggett, Langmuir, 2007, 23, 7328.
14 J. H. Gu, C. M. Yam, S. Li and C. Z. Cai, J. Am. Chem. Soc., 2004,
126, 8098.
Notes and references
1 (a) Z. Harris, ACS Symposium #680: Poly(ethylene Glycol):
Chemistry and Biological Applications, ACS, Washington, DC,
1998; (b) K. L. Prime and G. M. Whitesides, Science, 1991, 252,
1164.
ꢁc
This journal is The Royal Society of Chemistry 2009
5114 | Chem. Commun., 2009, 5112–5114