rates with peaks up to as few as 106 photons s-1, so that the
pile-up effect can be neglected. Imaging was carried out with a
laser scanning system using two fast galvo mirrors (Model 6210,
Cambridge Technology), operating in the descanned fluorescence
collection mode. The fluorescence was directed to a fiber coupled
APD (SPCM-AQR-14-FC, Perkin Elmer), which was connected
to a time-correlated single photon counting (TCSPC) module
(SPC830, Becker & Hickl), operated in the reversed start-stop
mode. Typically, the samples were scanned continuously for
about 30 s to achieve appropriate photon statistics to analyse
the fluorescence decays. Data were analysed using a commercial
software package (SPCImage V2.9, Becker & Hickl, Germany),
which uses an iterative reconvolution method to recover the
lifetimes from the fluorescence decays.
1
7.9 Hz, n0d = 73.8 Hz); 13C { H} NMR (CDCl3, 75 MHz): 14.9,
55.3, 58.7, 59.4, 68.2, 71.5, 91.6, 114.5, 118.2, 118.9, 125.9 (q, J =
3.8 Hz), 128.8, 129.5, 129.9, 130.8, 131.1, 131.5, 134.3, 136.1,
139.6, 139.8, 152.3, 160.4. EI-MS (nature of the peak, relative
intensity): 816.2 ([M], 100); C48H48BF3N2O6 (Mr = 816.71) C,
70.59; H, 5.92; N, 3.43; Found C, 70.35; H, 5.78; N, 3.31.
Acknowledgements
We thank CNRS and UdS for partial financial support and Drs
C. Andraud and O. Maury (ENS Lyon) for fruitful discussions.
Notes and references
1 J. W Lichtman and J.-A. Conchello, Nature Methods, 2005, 2, 910–919;
R. Yuste, Nature Methods, 2005, 2, 902–904.
Chemicals. Ethylmagnesium bromide (1 M solution in THF),
p-methoxybenzaldehyde were purchased from Aldrich and used
as received without further purification. 8-(4-Iodophenyl)-1,3,5,7-
2 (a) P. J. Campagnola and L. M. Loew, Nature Biotech., 2003, 21, 1356–
1360; F. Helmchen and W. Denk, Nature Methods, 2005, 2, 932–940.
3 Handbook of Cell-penetrating Peptides, ed U. Langel, Second Emission,
Taylor and Francis, CRC Press Book, 2006; F. Kielar, A. Congreve,
G.-L. Law, E. J. New, D. Parker, K.-L. Wong, P. Castreno and J. de
Mendoza, Chem. Commun., 2008, 2435–2437.
4 S. Atilgan, Z. Ekmekci, A. L. Dogan, D. Guc and E. U Akkaya, Chem.
Commun., 2006, 42, 4398–4400.
5 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932; G.
Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int. Ed., 2008,
47, 1184–1201.
tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene23
was
synthesized as previously described. 8-(4-Trifluoromethylphenyl)-
1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
was synthesized following the same procedure starting from
4-trifluoromethylbenzoyl chloride.
8-(4-Iodophenyl)-1,7-dimethyl-3,5-bis(4-methoxy-styryl-)-4,4-
bis(2,5-dioxaoct-7-ynyl)-4-bora-3a,4a-diaza-s-indacene (1). To a
solution of 2,5-dioxaoct-7-yne (0.084 g, 0.728 mmol) in anhydrous
THF (5mL), at room temperature, was added ethylmagnesium
bromide (1.0 M in THF, 0.65 ml). This mixture was stirred 2 h at
60 ◦C, then this solution was transferred to a Schlenk tube contain-
ing 8-(4-iodophenyl)-1,7-dimethyl-3,5-bis(4-methoxy-styryl-)-4,4-
difluoro-4-bora-3a,4a-diaza-s-indacene (obtained by a standard
procedure)8 (70 mg, 0.146 mmol) in anhydrous THF (5mL). The
mixture was then stirred at 60 ◦C for 12 h. After addition of
water, the organic fraction was extracted with dichloromethane.
After removal of the organic solvent, chromatography (silica,
dichloromethane/ethyl acetate, gradient from 99:1 to 95:5), af-
forded compound 1 as purple–greenish powder (70 mg, 55%).
1H NMR (CDCl3, 300 MHz): d = 1.47 (s, 6H), 3.14–3.16 (m,
4H), 3.19 (s, 6H), 3.50–3.53 (m, 4H), 3.86 (s, 6H), 4.16 (s, 4H),
6.63 (s, 2H),7.10–7.16 (m, 4H), 7.28 (ABsys, 8H, JAB = 8.6 Hz,
n0d = 188.3 Hz), 7.84 (d, 2H, J = 8.1 Hz), 8.10 (d, 2H, J = 16.4
6 R. Weissleder, Nature Biotech., 2001, 19, 316–317; R. Weissleder and
V. Ntziachristos, Nature Med., 2003, 9, 123–128.
7 M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson, Angew.
Chem., Int. Ed., 2009, 48, 3244–3266; O. Mongin, L. Porre`s, M. Charlot,
C. Katan and M. Blanchard-Desce, Chem.–Eur. J., 2007, 13, 1481–1498.
8 R. P. Haughland, H. C. Kang, US. Patent 1988, US4774339; N. Saki, T.
Dinc and E. U. Akkaya, Tetrahedron, 2006, 62, 2721–2725; R. Ziessel,
G. Ulrich, A. Harriman, M. A. H. Alamiry, B. Stewart and P. Retailleau,
Chem.–Eur. J., 2009, 15, 1359–1369.
9 C. Goze, G. Ulrich and R. Ziessel, J. Org. Chem., 2007, 72, 313–322.
10 T. M. Allen, P. Sapra, E. Moase, J. Moreira and D. Iden, Journal of
Liposome Research, 2002, 12, 1532–2394; Y. Gao, L. Chen, W. Gu, Y.
Xi, L. Lin and Y. Li, Molecular Pharmaceutics, 2008, 5, 1044–1054 and
references therein.
11 R. Ziessel, L. Bonardi, P. Retailleau and G. Ulrich, J. Org. Chem.,
2006, 71, 3093–3102; A. C. Benniston, G. Copley, K. J. Elliott, R. W.
Harrington and W. Clegg, Eur. J. Org. Chem., 2008, 2705–2713; S.
Hisato, U. Yasuteru, K. Hirotatsu and N. Tetsuo, J. Am. Chem. Soc.,
2007, 129, 5597–5604.
12 C. S. Sevier and C. A. Kaiser, Nature Rev., 2002, 3, 836–847.
13 Q. Zheng, G. Xu and P. N. Prasad, Chem.–Eur. J., 2008, 14, 5812–5819.
14 J. III Olmsted, J. Phys. Chem., 1979, 83, 2581–2584.
15 C. Xu, J. Guild, W. Webb and W. Denk, Optics Letters, 1995, 20, 2372–
2374.
1
Hz); 13C { H} NMR (CDCl3, 75 MHz): 15.1 (CH3), 55.4 (CH3),
58.8 (CH3), 59.4 (CH2), 68.2 (CH2), 71.5 (CH2), 94.5, 102.2, 114.4
(CH), 118.0 (CH), 119.1 (CH), 128.8 (CH), 130.0, 130.7 (CH),
131.2, 134.0 (CH), 135.3, 136.7, 138.1 (CH), 139.9, 152.2, 160.3.
EI-MS (nature of the peak, relative intensity): 874.1 ([M], 100).
C47H48BIN2O6 (Mr = 874.27) C, 64.54; H, 5.53; N, 3.20; Found C,
64.28; H, 5.29; N, 3.01.
´
16 M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A.
Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-
Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W.
Webb, X.-L. Wu and C. Xu, Science, 1998, 281, 1653–1656.
17 S. T. Hess, S. H. Huang, A. A. Heikal and W. W. Webb, Biochemistry,
2002, 41, 697–705.
18 (a) S. Steenken and S. V. Jovanovic, J. Am. Chem. Soc., 1997, 119, 617–
618; (b) D. H. Johnston, C.-C. Cheng, K. J. Campbell and H. H. Thorp,
Inorg. Chem., 1994, 33, 6388–6390.
8-(4-Trifluoromethyl-phenyl)-1,7-dimethyl-3,5-bis(4-methoxy-
styryl-)-4,4-bis(2,5-dioxaoct-7-ynyl)-4-bora-3a,4a-diaza-s-inda-
cene (2). The same procedure as for compound 1 was used start-
ing from 8-(4-trifluoromethylphenyl)-1,7-dimethyl-3,5-bis(4-meth-
oxy-styryl-)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (0.1 g,
0.159 mmol) to afford compound 2 as blue powder (0.083 g, 64%).
1H NMR (CDCl3, 300 MHz): d = 1.34 (s, 6H), 3.14–3.17 (m, 4H),
3.20 (s, 6H), 3.51–3.54 (m, 4H), 3.86 (s, 6H), 4.17 (s, 4H), 6.64 (s,
2H), 7.28 (ABsys, 8H, JAB = 8.6 Hz, n0d = 188.8 Hz), 7.62 (ABsys,
4H, JAB = 16.2 Hz, n0d = 288.7 Hz), 7.65 (ABsys, 4H, JAB =
19 J. P. Rostron, G. Ulrich, P. Retailleau, A. Harriman and R. Ziessel, New
J. Chem., 2005, 29, 1241–1244.
20 J. Azoulay, J. P. Clamme, J. L. Darlix, B. P. Roques and Y. Me´ly, J. Mol.
Biol., 2003, 326, 691–700.
21 J. P. Clamme, J. Azoulay and Y. Me´ly, Biophys. J., 2003, 84, 1960–1968.
22 K. Brandner, A. Sambade, E. Boutant, P. Didier, Y. Me´ly, C.
Ritzenthaler and M. Heinlein, Plant Physiol., 2008, 147, 611–23; J.
V. Fritz, P. Didier, J. P. Clamme, E. Schaub, D. Muriaux, C. Cabanne,
N. Morellet, S. Bouaziz, J. L. Darlix, Y. Me´ly and H. de Rocquigny,
Retrovirology, 2008, 5, 87–97.
23 A. Burghart, H. Kim, M. B. Wech, L. H. Thorensen, J. Reibenspies and
K. Burgess, J. Org. Chem., 1999, 64, 7813–7819.
3642 | Org. Biomol. Chem., 2009, 7, 3639–3642
This journal is
The Royal Society of Chemistry 2009
©