W.M. Singh, J.B. Baruah / Inorganica Chimica Acta 362 (2009) 4268–4271
4271
Fig. 5. (a) Repeated units in the structure of p-phenylenediacetate cadmium (+2) complex (VI). (b) The coordination environment around cadmium (bond distances (Å): Cd1–
O3, 2.26(3); Cd1–O2, 2.35(1); Cd1–N1, 2.38(2); Cd1–O1, 2.56(1); bond angles (°): O3–Cd1–O2, 137.6(4); O2–Cd1–O2, 84.7(9); O3–Cd1–N1, 84.4(5); O2–Cd1–N1, 87.5(6); O2–
Cd1–N1, 100.8(7), N1–Cd1–N1, 168.8(9); O3–Cd1–O1, 86.3(4); O2–Cd1–O1, 52.5(6); O2–Cd1–O10, 134.7(6); N1–Cd1–O1, 92.4(6); N1–Cd1–O1, 86.9(6)).
which decides the dimensionality of the polymerization process in
these manganese dicarboxylate complexes. Thermogravimetric
analysis of the three manganese complexes I–III shows that they
lose water molecules around 80 °C in all the cases.
pyridine ligand favors one dimensional coordination polymer irre-
spective of coordination number of the central metal atom.
Appendix A. Supplementary data
An one dimensional coordination polymer IV of copper(II)
(Fig. 3a) can be prepared from simple reaction of copper(II) acetate
with p-phenylenediacaetic acid followed by crystallization from
pyridine water mixed solvent. It has two pyridine ligands and
two aqua ligands. Two carboxylate ligands act as bridges the cop-
per ions. The polymer has octahedral geometry around the copper
ions (Fig. 3b). In this coordination polymer the pyridine ligands are
trans to each other and the aqua ligands are also trans to each
other. The Cu1–O3 bond (2.83 Å) is much longer than the Cu1–
O1 bond (2.00 Å). This is obvious for copper (+2) which shows
Jahn–Teller distortion.
CCDC 714474, 714475, 714476, 714477, 716805 and 716806
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Supplementary data associated with this article can be found, in
References
Similarly, the corresponding zinc (2+) p-phenylenediacetate
coordination polymer having pyridine has a distorted tetrahedral
geometry around the zinc (Fig. 4a and b). In the coordination poly-
mer the zinc–nitrogen bond is slightly longer than zinc–oxygen
bonds and it has a chain like structure (Fig. 4a). Similarly, the cad-
mium complex of p-phenylenediacetate and pyridine ligand is also
a one dimensional coordination polymer with all the cadmium ions
having two pyridine and one aqua ligand anchored to them. The
polymer forms a zig-zag chain like structure in which each cad-
mium ions have seven coordination number (Fig. 5). The carboxyl-
ate groups are chelating in this polymer (Fig. 5a). The seven
coordination number for cadmium is common in coordination
chemistry [21]. While using pyridine as ancillary ligand we ob-
tained a coordination polymer; whereas cadmium p-phenylenedi-
acetate with 4-aminopyridine has uncoordinated amino group [22]
leading to supramolecular assembly.
The geometrical features of the dicarboxylic acids in these com-
plexes are of interest from the orientation of the carboxylic acids
across the rings. Syn or anti arrangements of the carboxylate
groups across the phenylene rings are associated in these metal
complexes. There is a competition between coordination of dicar-
boxylates with aromatic nitrogen containing ligands. The dicarbox-
ylate complexes derived from p-phenylenediacetate having
[1] A. Erxleben, Coord. Chem. Rev. 246 (2003) 203.
[2] A.J. Fletchera, K.M. Thomasa, M.J. Rosseinsky, J. Solid State Chem. 178 (2005)
2491.
[3] K. Uemuraa, R. Matsudab, S. Kitagawa, J. Solid State Chem. 178 (2005) 2420.
[4] W.M. Singh, J.B. Baruah, Dalton Trans. (2009) 2352.
[5] A. Karmakar, J.B. Baruah, Polyhedron 27 (2008) 3409.
[6] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I.
Margiolaki, Science 309 (2005) 2040.
[7] F.S. Delgado, M. Hernandez-Molina, J. Sanchiz, C. Ruiz-Perez, Y. Rodriguez-
Martin, T. Lopez, F. Lloret, M. Julve, CrystEngComm 6 (2004) 106.
[8] I. GildeMuro, L. Lezama, M. Insausti, T. Rojo, Polyhedron 23 (2004) 859.
[9] F.S. Delgado, C. Ruiz-Perez, J. Sanchiz, F. Lloret, M. Julve, CrystEngComm 8
(2006) 530.
[10] P. Lightfoot, A. Snedden, J. Chem. Soc., Dalton Trans. (1999) 3549.
[11] J. Zhou, C. Sun, L. Jin, J. Mol. Struct. 832 (2007) 55.
[12] W.M. Singh, A. Karmakar, J.B. Baruah, Inorg. Chem. Commun. 11 (2008)
576.
[13] Y. Cui, O.R. Evans, H.L. Ngo, P.S. White, W. Lin, Angew. Chem., Int. Ed. Engl. 41
(2002) 1159.
[14] X.-L. Wang, C. Qin, E.-B. Wang, L. Xu, Z.-M. Su, C.-W. Hu, Angew. Chem., Int. Ed.
Engl. 43 (2004) 5036.
[15] Y. Li, N. Hao, Y. Lu, E. Wang, Z. Kang, C. Hu, Inorg. Chem. 42 (2003) 3119.
[16] A.M. Baruah, A. Karmakar, J.B. Baruah, Polyhedron 26 (2007) 4479.
[17] J.-Y. Wu, C.-H. Chnag, T.-W. Tseng, K.-L. Lu, J. Mol. Struct. 796 (2006) 69.
[18] S.-R. Fan, L.-G. Zhu, H.-P. Xiao, S.W. Ng, Acta Crystallogr. E61 (2005) m563.
[19] Z.-L. Chen, Y.-Z. Zhang, F.-P. Linag, Q. Wu, Acta Crystallogr. E62 (2006) m2409.
[20] Z.-L. Chen, Y.-Z. Zhang, F.-P. Linag, Acta Crystallogr. C62 (2006) m48.
[21] A. Karmakar, R.J. Sarma, J.B. Baruah, Polyhedron 26 (2007) 1347.
[22] X. Lin, Y.-Q. Wang, R. Cao, F. Li, W.-H. Bi, Acta Crystallogr. C61 (2005) m292.