3
added in order, forming four layers. A rubber septum was fitted to the test tube, and the septum was pierced using a needle equipped
with a balloon, which acted as a reservoir of hydrogen sulfide gas during the reaction. The air in the test tube was removed using a
syringe until the balloon was completely deflated. The test tube was heated in an oil bath at 55 °C for 20 h with slow stirring,
ensuring not to mix the layers, and then it was allowed to cool to ambient temperature. After removing Galden HT135 using a glass
pipette, the organic layer was transferred to a separatory funnel using diethyl ether and water. The organic layer was separated, and
the aqueous layer was extracted with diethyl ether. The combined organic layers were then dried over sodium sulfate, filtered, and
concentrated. The residue was purified by column chromatography on silica gel using hexane/chloroform (4:1) as the eluent,
affording desired product 2a (49 mg, 46%) as a light brown oil.
Acknowledgement
This work was partially supported by a Grant-in-Aid for Scientific Research (C) (no. 24550213) from the Japan Society for the
Promotion of Science (JSPS).
Supplementary data
Products 2aS1, 2bS1, 2cS1, 2dS1, 2eS2, 3aS3, 3bS4, 3cS3, 3dS3, and 3fS5 are known compounds and showed the identical spectra
according to the literature shown in the Supplementary data. New compounds, 2f and 3e, were characterized by 1H & 13C NMR, IR
spectra, LR-MS (EI), and HRMS (EI). These data are available in the Supplementary data associated with this article can be found
in the online version.
References and notes
1.
2.
For a general review of fl m th, I. T. In Handbook of Fluorous Chemistry; Wiley-VCH:
Weinheim, Germany, 2004.
(a) Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 12946.; (b) Nakamura, H.; Usui, T.; Kuroda, H.;
Ryu, I.; Matsubara, H.; Yasuda, S.; Curran, D. P. Org. Lett. 2003, 5, 1167. (c) Matsubara, H.; Yasuda, S.; Ryu, I. Synlett 2003, 247. (d) Rahman,
Md. T.; Kamata, N.; Matsubara, H.; Ryu, I. Synlett 2005, 2664. (e) Matsubara, H.; Tsukida, M.; Yasuda, S.; Ryu, I. J. Fluorine Chem. 2008, 129,
951. (f) Matsubara, H.; Tsukida, M.; Ishihara, D.; Kuniyoshi, K.; Ryu, I. Synlett 2010, 2014; (g) Jana, N. K.; Verkade, J. G. Org. Lett. 2003, 5,
3787; (h) Iskra, J.; Stavber, S.; Zupan, M. Chem. Commun. 2003, 2496; (i) Curran, D. P.; Werner, S. Org. Lett. 2004, 6 1 1 ( ek, A.;
Stavber, S.; Zupan, M.; Iskra, J. Eur. J. Org. Chem. 2006, 483; (k) Windmon, N.; Dragojlovic, V. Tetrahedron Lett. 2008, 49, 6543; (l) Windmon,
N.; Dragojlovic, V. Beilstein J. Org. Chem. 2008, 4, 29; (m) Ma, K.; Li, S.; Weiss, R. G. Org. Lett. 2008, 10, 4155; (n) Van Zee, N. J.; Dragojlovic,
V. Org. Lett. 2009, 11, 3190; (o) Pels, K.; Dragojlovic, V. Beilstein J. Org. Chem. 2009, 5, 75; (p) Tojino, M.; Hirose, Y.; Mizuno, M. Tetrahedron
Lett. 2013, 54, 7124.
3.
For reviews on the phase-vanishing method, see: (a) Ryu, I.; Matsubara, H.; Nakamura, H.; Curran, D. P. Chem. Rec. 2008, 8, 351; (b) Iskra, J. Lett.
Org. Chem. 2006, 3, 170; (c) Van Zee, N. J.; Dragojlovic, V. Chem. Eur. J. 2010, 16, 7950.
4.
5.
6.
Matsubara, H.; Niwa, Y.; Matake, R. Synlett 2015, 26, 1276.
Matake, R.; Niwa, Y.; Matsubara, H. Org. Lett. 2015, 17, 2354.
Galden HT135 and HT200 are polyether-type perfluorinated solvents, which are commercially available from Solvay Solexis Inc. The kinetic
viscosities of Galden HT135 and HT200 at 25 °C are 1.0 and 2.4 cSt, respectively.
Fig. 2 General structure of Galden
7.
8.
9.
Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A,1966, 1711.
Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, A. Angew. Chem. Int. Ed. Engl. 1962, 1, 80.
We carried out the Wacker oxidation of 1-dodecene several times using the PV method with oxygen evolution. However, the yields of 2-
dodecanone were moderate, up to 47%.
10. For a review of hydrogen sulfide as a reagent, see: Dittmer, D. C. In Encyclopedia of Reagents for Organic Synthesis, 2nd ed.; Paquette, L. A.;
Crich, D.; Fuchs, P. L.; Molander, G. A., Ed.; John Wiley & Sons: Chichester, UK, 2009; Vol. 7, pp 5452.
11. For example; Beauchamp, R. O.; Bus, J. S.; Popp, J. A.; Boreiko, C. J.; Andjelkoviche, D. A. CRC Critical Reviews in Toxicology, 1984, 13, 25.
12. Dibenzyl sulfide prepared using hydrogen sulfide gas generated separately afforded the product in 65% yield, indicating that the reactivity of the
reaction is very similar to that of the PV method. For experimental details, see the supplementary data.
13. (a) Pradhan, N. C.; Sharma, M. N. Ind. Eng. Chem. Res. 1990, 29, 1103; (b) Ido, T.; Susaki, T.; Jin, G.; Goto, S. Appl. Catal. A:Gen. 2000, 201,
139; (c) Maity, S. K.; Pradhan, N. C.; Patwardhan, A. V. J. Mol. Catal. A: Chem. 2006, 250, 114; (d) Sen, S.; Pradhan, N. C.; Patwardhan, A. V.
Asia-Pac. J. Chem. Eng. 2011, 6, 257; (e) Sidiq, N.; Bhat, M. A.; Khan, K. Z.; Khuroo, M. A. Heteroatom Chem. 2012, 23, 373; (f) Hajipour, A. R.;
Pourkaveh, R.; Karimi, H. Appl. Organometal. Chem. 2014, 28, 879; (g) Firouzabadi, H.; Iranpoor, N.; Gorginpour, F.; Samadi, A. Eur. J. Org.
Chem. 2015, 2914; (h) Lu, G. P.; Cai, C. Green Chem. Lett. Rev. 2012, 5, 481.
14. Dibenzyl disulfide prepared using hydrogen sulfide gas generated separately afforded the product in 22% yield, indicating that the reactivity of the
reaction is inferior to that of the PV method. For experimental details, see the supplementary data.