9580 Inorganic Chemistry, Vol. 48, No. 19, 2009
Tsai et al.
was characterized by single-crystal X-ray crystallography.4b
Upon the addition of NO to the [3Fe-4S] form of
m-aconitase, new transient signals, tentatively assigned as
DNICs containing two histidyl ligands or DNICs containing
mixed histidine and cysteine ligands, appear during the early
phases of the reaction.6a
Also known in inorganic chemistry is the precedent for
low-molecular-weight DNICs at four oxidation levels, in-
cluding the EPR-active, anionic/neutral/cationic {Fe(NO)2}9
DNICs as well as the EPR-silent, neutral {Fe(NO)2}10
DNICs coordinated by CO, PPh3, and N-containing ligands.7-10
Here, the electronic state of the {Fe(NO)2} unit of DNICs is
generally designated as {Fe(NO)2}n (n is the total number of
electrons associated with the metal d and π* (NO) orbitals),
invoking the Enemark-Feltham notation.11 Recently, we
have established that the IR νNO in combination with EPR
spectra (pattern) may be employed to discriminate between
the {Fe(NO)2}9 DNICs with a variety of coordinated ligands
(thiolate, imidazole, and imidazolate).7c,12 Transformations
of [(NO)2Fe(μ-SC6H4-o-NHCOPh)]2 into the neutral
{Fe(NO)2}10 DNICs [(NO)2Fe(PPh3)2] via reductive elimi-
nation of the bridged thiolates and into the anionic
{Fe(NO)2}9 [(NO)2Fe(SC6H4-o-NCOPh)]- containing anio-
nic sulfur-amide chelating ligands were elucidated to be
controlled by the nucleophile L (L = PPh3, [OPh]-).13 In
addition, conversion of the EPR-active, anionic {Fe(NO)2}9
DNICs [(NO)2Fe(C3H3N2)2]- (C3H3N2=imidazolate) into
the anionic {Fe(NO)2}9 [(NO)2Fe(C3H3N2)(SR)]- (R=tBu,
Et, Ph) via ligand exchange was demonstrated.12
Figure 1. ORTEP drawing and labeling scheme of complex 1 with
˚
thermal ellipsoids drawn at 50% probability. Selected bond lengths (A)
and angles (deg): Fe(1)-N(4) 1.691(2), Fe(1)-N(3) 1.699(2), Fe(1)-O(5)
2.002(1), Fe(1)-O(3) 2.038(1), N(3)-O(1) 1.173(2), N(4)-O(2) 1.173(2),
N(5)-O(4) 1.236(2), N(5)-O(3) 1.271(2), N(6)-O(6) 1.214(2), N(6)-O-
(5) 1.303(2), O(1)-N(3)-Fe(1) 161.1(2), O(2)-N(4)-Fe(1) 164.3(2),
N(3)-Fe(1)-N(4) 110.3(1), O(4)-N(5)-O(3) 112.9(2), O(6)-N(6)-O-
(5) 115.0(2), O(3)-Fe(1)-O(5) 93.5(1).
antiferromagnetically coupled to two NO (S=1/2) ligands”.7a
Although some DNICs have been proposed to contain [N,
O]/[O,O]-coordinate ligands in enzymology,6 no mononuc-
lear DNICs coordinated by phenoxide, the mixed phenox-
ide-imidazolate, and the mixed phenoxide-thiolate have
been isolated and characterized in synthetic chemistry. In this
manuscript, the synthesis, reactivity, and transformation of
the EPR-active, anionic {Fe(NO)2}9 [(NO)2Fe(ONO)2]- (1),
[(NO)2Fe(OPh)2]- (2), [(NO)2Fe(OPh)(C3H3N2)]- (C3H3N2=
imidazolate) (3), [(NO)2Fe(OPh)(-SC4H3S)]- (-SC4H3S=
thienylthiolate) (4), [(NO)2Fe(p-OPhF)2]- (5), and [(NO)2-
Fe(SPh)(ONO)]- (6) are described. The binding affinity of
nitrite/phenoxide/imidazolate/thiolate toward the {Fe(NO)2}9
motif was investigated. Also, the present work was under-
taken to propose the electronic structure of the {Fe(NO)2}
core of {Fe(NO)2}9 DNICs containing the various ligation
modes [S,S]/[S,O]/[O,O]/[N,O] on the basis of crystal struct-
ure data, EPR spectroscopy, X-ray absorption spectroscopy
(XAS) of the Fe K-edge, and DFT computation.
Because of the small energy difference between transition-
metal d and NO π* orbitals, it is complicated to define the
“noninnocent” character of NO acting as NOþ, NO;, or
NO.14 Within the class of Fe(NO)2}9 DNICs, the oxidation
state of iron and NO are in controversy. Intriguingly, a recent
investigation of the electronic structure of the {Fe(NO)2}9
;
unit of complex [(NO)2FeS5]
inferred that [(NO)2-
FeS5]; is better described as an {FeI(NO)2}9 electronic
structure related to the spin configuration as “Fe (S=3/2)
(7) (a) Tsai, M. L.; Chen, C. C.; Hsu, I. J.; Ke, S. C.; Hsieh, C. H.; Chiang,
K. A.; Lee, G. H.; Wang, Y.; Liaw, W. F. Inorg. Chem. 2004, 43, 5159–5167.
(b) Tsai, F. T.; Chiou, S. J.; Tsai, M. C.; Tsai, M. L.; Huang, H. W.; Chiang, M. H.;
Liaw, W. F. Inorg. Chem. 2005, 44, 5872–5881. (c) Tsai, M. L.; Liaw, W. F. Inorg.
Chem. 2006, 45, 6583–6585. (d) Hung, M. C.; Tsai, M. C.; Lee, G. H.; Liaw, W. F.
Inorg. Chem. 2006, 45, 6041–6047. (e) Lu, T. T.; Chiou, S. J.; Chen, C. .Y.; Liaw,
W. F. Inorg. Chem. 2006, 45, 8799–8806. (f) Chen, T. N.; Lo, F. C.; Tsai, M. L.;
Shih, K. N.; Chiang, M. H.; Lee, G. H.; Liaw, W. F. Inorg. Chim. Acta 2006, 359,
2525–2533. (g) Chiou, S. J.; Wang, C. C.; Chang, C. M. J. Organomet. Chem.
2008, 693, 3582–3586. (h) Hsu, I.-J.; Hsieh, C.-H.; Ke, S.-C.; Chiang, K.-A.; Lee,
J.-M.; Chen, J.-M.; Jang, L.-Y.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. J. Am. Chem.
Soc. 2007, 129, 1151–1159. (i) Lee, C.-M.; Chen, C.-H.; Dutta, A.; Lee, G.-H.;
Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492–11493.
(8) (a) Chiang, C. Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M.
Y. J. Am. Chem. Soc. 2004, 126, 10867–10874. (b) Baltusis, L. M.; Karlin, K.
D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627–
2632.
(9) Albano, V. G.; Araneo, A.; Bellon, P. L.; Chani, G.; Manassero, M. J.
Organomet. Chem. 1974, 67, 413–422.
Results and Discussion
Upon the addition of [PPN][NO2] into a THF solution of
complex [Fe(CO)2(NO)2][BF4] in a 2:1 stoichiometry,15,16
a
reaction ensued over the course of 5 min to yield the anionic
{Fe(NO)2}9 [PPN][(NO)2Fe(ONO)2] (1) containing two O-
bound nitrito ligands, identified by IR, UV-vis, EPR, and
single-crystal X-ray crystallography (Figure 1). Complex 1 is
thermally stable in THF solution and exhibits diagnostic IR
ν
NO stretching frequencies at 1775 s and 1705 s cm-1 (THF).
The EPR spectrum (Figure 2) of complex 1 displays an
isotropic signal with g=2.033 at 298 K and a rhombic signal
with g1=2.052, g2=2.029, and g3=2.014 at 77 K, consistent
with the characteristic g value of {Fe(NO)2}9 DNICs.7,12,13,15
In contrast to the decomposition observed in the reaction
of [Fe(CO)2(NO)2]þ and [Na][OPh] in THF at ambient
temperature, the addition of 2 equiv of [Na][OPh] to the
(10) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem.
Soc. 1999, 121, 10217–10218.
(11) Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339–
406.
(12) Huang, H. W.; Tsou, C. C.; Kuo, T. S.; Liaw, W. F. Inorg. Chem.
2008, 47, 2196–2204.
(13) Tsai, M. L.; Hsieh, C. H.; Liaw, W. F. Inorg. Chem. 2007, 46, 5110–
5117.
(14) (a) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034–
9040. (b) Brown, C. A.; Pavlosky, M. A.; Westre, T. E.; Zhang, Y.; Hedman, B.;
Hodgson, K. O.; Solomen, E. I. J. Am. Chem. Soc. 1995, 117, 715–732.
(15) Tsai, F. T.; Kuo, T. S.; Liaw, W. F. J. Am. Chem. Soc. 2009, 131,
3426–3427.
(16) Atkinson, F. I.; Blackwell, H. E.; Brown, N. C.; Connelly, N. G.;
Crossley, J. G.; Orpen, A. G.; Rieger, A. L.; Rieger, P. H. J. Chem. Soc.,
Dalton Trans. 1996, 3491–3502.