2152
A. Porcheddu et al.
LETTER
(12) Recently, Toscano et al. have demonstrated that a series of
aromatic and nonaromatic N-hydroxysulfonamide
derivatives release nitroxyl at a controlled rate under
physiological conditions: Toscano, J. P.; Brookfield, F. A.;
Cohen, A. D.; Courtney, S. M.; Frost, L. M.; Kalish, V. J.
US Patent, 20070299107A1, 2007.
(13) Blackburn, M.; Mann, B. E.; Taylor, B. F.; Worrall, A. F.
Eur. J. Biochem. 1985, 153, 553.
(14) (a) Gattermann, L. Laboratory Methods of Organic
Chemistry; The Macmillan Company: New York, 1937.
(b) Scolz, J. N.; Engel, S. P.; Glidewell, C.; Whitmire, K.
Tetrahedron 1989, 45, 7695.
(15) During the recrystallization of benzenesulfohydroxamic
acid previously prepared via a classical sulfonylation
procedure Engel et al. (ref. 14b) have isolated and
characterized several side products such as, for example:
PhSO3– + H3NNHSO2Ph and PhSH (accounted for the
reduction of PhSO2Cl by NH2OH).
(16) (a) Fujimoto, M.; Sakai, M. Chem. Pharm. Bull. 1965, 13,
248. (b) Keasling, H. H.; Schumann, E. L.; Veldkamp, W.
J. Med. Chem. 1965, 8, 548.
(25) General Procedure for the Sulfonylation of
Hydroxylamine in the Presence of MgO; N-Hydroxy-2-
methylbenzenesulfonamide (2b): Hydroxylamine
hydrochloride (0.72 g, 10 mmol) in MeOH–H2O (3:2, 5 mL)
was treated with MgO (0.34 g, 8.6 mmol), then a solution of
o-toluenesulfonyl chloride (1a; 0.8 g, 4.3 mmol) in THF (30
mL), and MgO (0.17 g, 4.3 mmol) were added. The reaction
was vigorously stirred at r.t. until the sulfonyl chloride had
completely disappeared (TLC: EtOAc–hexane, 1:1; 2 h).
Then, the mixture was filtered first through a pad of Celite,
and then on a short plug of silica gel. The clear filtrate was
dried over MgSO4 and evaporated to dryness to give the
resulting N-hydroxysulfonamide 2b (0.59 g, 74%) as a
crystalline white solid (96% purity); mp 178–180 °C. 1H
NMR (CDCl3): d = 7.93 (d, J = 8.0 Hz, 1 H), 7.75 (br s, 1 H),
7.42 (t, J = 7.3 Hz, 1 H), 7.27 (t, J = 7.5 Hz, 2 H), 2.62 (s, 3
H). 13C NMR (CDCl3): d = 138.3, 134.8, 133.1, 132.3, 130.7,
125.9, 20.5. HRMS (ESI): m/z [M + H+] calcd for
C7H10NO3S: 188.0381; found: 188.0377. Anal. Calcd for
C7H9NO3S: C, 44.91; H, 4.85; N, 7.48. Found: C, 44.83; H,
4.71; N, 7.57.
(17) Although sulfonyl chlorides are widely used for N-sulfo-
nylation of amines, their drawbacks are the instability and
the too strong reactivity: Kim, H.-K.; Park, Y.-D.; Lee,
M.-H.; Chung, H.-A.; Kweon, D.-H.; Cho, S.-D.; Yoon,
Y.-J. Bull. Korean Chem. Soc. 2003, 24, 1655.
(18) Low molecular weight aliphatic sulfohydroxamic acids are
the most important compounds for their tendency to generate
HNO under physiological condition (at about pH 7, see
Scheme 1).
4-tert-Butyl-N-hydroxybenzenesulfonamide (2c):
According to the procedure previously described for 2b, the
sulfohydroxamic acid 2c was isolated as a white waxy solid
in 77% yield (98% purity). 1H NMR (DMSO): d = 9.53 (s, 1
H), 7.52 (d, J = 8.5 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 2 H), 1.24
(s, 9 H). 13C NMR (DMSO): d = 156.4, 134.7, 125.9, 125.5,
35.1, 31.3. HRMS (ESI): m/z [M + H+] calcd for
C10H16NO3S: 230.0851; found: 230.0857. Anal. Calcd for
C10H15NO3S: C, 52.38; H, 6.59; N, 6.11. Found: C, 52.44; H,
6.39; N, 6.01.
(19) (a) Graham, S. L.; Scholz, T. H. Synthesis 1986, 1031.
(b) Boruah, A.; Baruah, M.; Prajapati, D.; Sandhu, J. S.
Synlett 1997, 1253. (c) Iyer, S.; Sattar, A. K. Synth.
Commun. 1998, 28, 1721. (d) Chan, W. Y.; Berthelette, C.
Tetrahedron Lett. 2002, 43, 4537. (e) Baskin, J. M.; Wang,
Z. Tetrahedron Lett. 2002, 43, 8479. (f) Caddick, S.;
Wilden, J. D.; Bush, H. D.; Wadman, S. N.; Judd, D. B. Org.
Lett. 2002, 4, 2549. (g) Caddick, S.; Wilden, J. D.; Judd, D.
B. J. Am. Chem. Soc. 2004, 126, 1024. (h) Katritzky, A. R.;
Rodriguez-Garcia, V.; Fair, S. K. J. Org. Chem. 2004, 69,
1849. (i) Caddick, S.; Wilden, J. D.; Judd, D. B. Chem.
Commun. 2005, 2727. (j) Wilden, J. D.; Judd, D. B.;
Caddick, S. Tetrahedron Lett. 2005, 46, 7637. (k) Massah,
A.; Kazemi, F.; Azadi, D.; Farzaneh, S.; Aliyan, H.;
Naghazh, H. J.; Momeni, A. R. Lett. Org. Chem. 2006, 3,
235. (l) Chantarasriwong, O.; Jang, D. O.; Chavasiri, W.
Tetrahedron Lett. 2006, 47, 7489. (m) Harmata, M.; Zheng,
P.; Huang, C.; Gomes, M. G.; Ying, W.; Ranyanil, K.-O.;
Balan, G.; Calkins, N. L. J. Org. Chem. 2007, 72, 683.
(n) Wilden, J. D.; Geldeard, L.; Lee, C. C.; Judd, D. B.;
Caddick, S. Chem. Commun. 2007, 1074.
(20) (a) Sharghi, H.; Hosseini, M. Synthesis 2002, 1057.
(b) Sarvari, H. M.; Sharghi, H. J. Org. Chem. 2004, 69,
6953. (c) Varma, R. S. Green Chem. 1999, 1, 43.
(21) Kang, H. H.; Rho, H. S.; Kim, D.-H.; Oha, S.-G.
Tetrahedron Lett. 2003, 44, 7225.
(22) Among these metal-mediated reactions, magnesium oxide
has received considerable interest because of its novel
surface catalytic properties: Kim, D.-H.; Rho, H.-S.; Youb,
J. W.; Lee, J. C. Tetrahedron Lett. 2002, 43, 277.
(23) Babu et al. have demonstrated the advantages obtained by
the use of magnesium oxide in the synthesis of N-Fmoc-
protected amino acid hydroxamates: Vasanthakumar, G .-R.;
Babu, V. V. S. Tetrahedron Lett. 2003, 44, 4099.
(24) The structure of 2a was verified by 1H NMR and 13C NMR
and mass spectroscopy.
N-Hydroxy-2,4,6-triisopropylbenzenesulfonamide (2d):
According to the procedure previously described for 2b, the
sulfohydroxamic acid 2d was isolated as a crystalline white
solid in 90% yield (96% purity); mp 212–213 °C (dec.). 1H
NMR (DMSO): d = 7.51 (br s, 2 H), 6.92 (s, 2 H), 4.53 (m,
2 H), 2.75 (m, 1 H), 1.13 (d, J = 6.9 Hz, 6 H), 1.07 (d, J = 6.8
Hz, 12 H). 13C NMR (DMSO): d = 147.4, 146.9, 141.8,
121.5, 33.4, 28.2, 24.9, 23.9. HRMS (ESI): m/z [M + H+]
calcd for C15H26NO3S: 300.1633; found: 300.1626. Anal.
Calcd for C15H25NO3S: C, 60.17; H, 8.42; N, 4.68. Found: C,
60.23; H, 8.49; N, 4.45.
N-Hydroxy-2,6-dimethoxybenzenesulfonamide (2e):
According to the procedure previously described for 2b, the
sulfohydroxamic acid 2e was isolated as a crystalline white
solid in 95% yield (97% purity); mp 158–160 °C. 1H NMR
(DMSO): d = 8.59 (d, J = 3.5 Hz, 1 H), 7.96 (d, J = 3.5 Hz,
1 H), 6.82 (d, J = 8.7 Hz, 1 H), 5.83 (m, 2 H), 3.02 (d, J = 6.6
Hz, 6 H). 13C NMR (DMSO): d = 164.8, 158.3, 132.9, 116.4,
105.2, 56.2, 55.8. HRMS (ESI): m/z [M + H+] calcd for
C8H12NO5S: 234.0436; found: 234.0430. Anal. Calcd for
C8H11NO5S: C, 41.20; H, 4.75; N, 6.01. Found: C, 41.31; H,
4.70; N, 6.12.
N-Hydroxythiophene-2-sulfonamide (2f): According to
the procedure previously described for 2b, the sulfo-
hydroxamic acid 2f was isolated as a waxy solid in 96%
yield (97% purity). 1H NMR (CDCl3): d = 7.75 (m, 1 H),
7.71 (m, 1 H), 7.35 (br s, 2 H), 7.16 (m, 1 H). 13C NMR
(CDCl3): d = 134.5, 133.9, 127.5, 116.5. HRMS (ESI): m/z
[M + H+] calcd for C4H6NO3S2: 179.9789; found: 179.9793.
Anal. Calcd for C4H5NO3S2: C, 26.81; H, 2.81; N, 7.82.
Found: C, 26.74; H, 2.90; N, 7.74.
N-Hydroxy-2-nitrobenzenesulfonamide (2g): According
to the procedure previously described for 2a, the sulfo-
hydroxamic acid 2g was isolated as a crystalline yellow solid
in 97% yield (99% purity); mp 154–157 °C. 1H NMR
(DMSO): d = 7.83 (d, J = 7.8 Hz, 1 H), 7.55 (m, 3 H).
Synlett 2009, No. 13, 2149–2153 © Thieme Stuttgart · New York