6490 Organometallics, Vol. 28, No. 22, 2009
Moreno et al.
12a
these solution results with both X-ray crystallography and
DFT calculations. In addition to the question of ion pairing
we also consider aspects of the allyl dynamics in our salts.
PtHðNO ÞðPEt Þ þNaðBPh Þ s
f
3
3
4
2
MeOH
þ
Results and Discussion
ðPEt3Þ2HPtðμ-HÞPtðPhÞðPEt3Þ2
ð3Þ
13
Scheme 1 shows the two η3-allyl ligand types selected.
Several model salts contain either the BArF- or PF6- anions
in addition to those with the BPh4- anion. The new Pd-allyl
cationic complexes 3 and 4 were prepared using standard
methods (see Experimental Section) and were characterized
via NMR and microanalytical methods in addition to five
-
X-ray diffraction studies. Many of the BPh4 salts decom-
pose at room temperature, due to the phenylation reaction
mentioned above, so that the characterization for these salts
required low-temperature measurements.
Some time ago Crociani and co-workers14 reported on the
phenylation of palladium-allyl cationic complexes (see eq 4)
and suggested that the BPh4- anion might well be involved in
extensive ion pairing. In our NMR studies on cationic Mn-
(CO)3(η6-arene)þ complexes15 with several boron counter-
ions using pulsed gradient spin-echo (PGSE) NMR
diffusion methods16 we could show that, indeed, there was
Table 1 shows 13CNMR data for the allyl carbons of the
salts. These NMR parameters have been reported on a
number of occasions18,20-24 and used in discussions of both
bonding and reactivity. For the 2-methyl allyl cations, 3, the
terminal allyl 13C signals fall in the range δ=61-64, and we
do not find marked changes in their positions when the two
N-donors are different. The 1,3-diphenyl allyl cationic salts,
4, show the terminal allyl carbons in the range δ=78-81, in
agreement with the literature.18 In all of these complexes,
changing the anion has little or no effect on these allyl carbon
13C chemical shifts. Moreover, there are no noteworthy
changes in these terminal allyl 13C values when the chelating
ligands contain bulky groups in the ortho positions of the
Schiff base rings.
-
much more ion pairing with BPh4 than with BArF-.
A similar finding was reported for Ru(η6-arene) salts bearing
R-diimine ligands.17
Since we have a long-standing interest in palladium allyl
complexes,18 we have prepared some old and new salts of the
form [Pd(η3-allyl)(N,N)](anion) (see Scheme 1) and report
here studies concerned with the nature of the ionic interac-
tions and aspects of their dynamics in CD2Cl2 solutions. The
NMR approach to the subject of ion pairing follows that
used in our earlier studies.16,19 We separately measure the
diffusion constants (D values) for the cation and anion. If
these are identical and lead to relatively large hydrodynamic
radii, rH, we conclude that there is approximately 100% ion
pairing. This will often be the case for CDCl3 solutions;
however, for other solvents, for example, CD2Cl2, one
normally finds intermediate ion pairing. We then use
19F,1H (or 1H,1H) Overhauser measurements to provide
insight into the structure of the ion pair and try to support
1
Interestingly, a comparison of the H chemical shifts for
-
-
the PF6 and BPh4 salts shows that many protons in the
latter salts are shifted to lower frequency. Presumably this is
due to the local anisotropic effects associated with a proxi-
mate B(Ph) moiety (see Scheme 2 and Scheme S1). The
largest changes are found in the N,N-chelate rings, and the
-
same comparison using PF6 and BArF- (rather than
BPh4-) reveals only small differences, suggesting that the
-
BArF- is not as strongly ion paired as BPh4
.
X-ray Diffraction Studies. Five of the palladium salts
proved amenable for structural studies, and Table 2 provides
a list of the experimental details associated with these
measurements. Figure 1 shows ORTEP plots for the four
2-methyl allyl cations, 3a, 3b, 3f (as BPh4- salts) and 3h (as a
PF6- salt). Figure 2 gives the corresponding view for the 1,3-
diphenyl cation, 4g (as a PF6- salt). The immediate coordi-
nation spheres about the palladium atoms consist of the two
N-donors and the η3-allyl ligand. The complexed 2-methyl
allyl ligand is distorted such that the methyl group is tipped
(14) Crociani, B.; Antonaroli, S.; Dibianca, F.; Fontana, A.
J. Organomet. Chem. 1993, 450, 21–26.
(15) Schott, D.; Pregosin, P. S.; Jacques, N.; Chavarot, M.; Rose-
Munch, F.; Rose, E. Inorg. Chem. 2005, 44, 5941–5948.
(16) (a) Pregosin, P. S. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49,
261–288. (b) Pregosin, P. S.; Kumar, P. G. A.; Fernandez, I. Chem. Rev.
2005, 105, 2977–2998. (c) Kumar, P. G. A. Aust. J. Chem. 2006, 59, 78–78.
(17) (a) Zuccaccia, D.; Bellachioma, G.; Cardaci, G.; Ciancaleoni,
G.; Zuccaccia, C.; Clot, E.; Macchioni, A. Organometallics 2007, 26,
3930. (b) Binotti, B.; Bellachioma, G.; Cardaci, G.; Carfagna, C.; Zuccaccia,
C.; Macchioni, A. Chem.-Eur. J. 2007, 13, 1570. (c) Zuccaccia, D.;
Macchioni, A. Organometallics 2005, 24, 3476. (d) Macchioni, A.; Bella-
chioma, G.; Cardaci, G.; Travaglia, M.; Zuccaccia, C.; Milani, B.; Corso, G.;
Zangrando, E.; Mestroni, G.; Carfagna, C.; Formica, M. Organometallics
1999, 18, 3061.
(18) (a) Pregosin, P. S.; Salzmann, R. Coord. Chem. Rev. 1996, 155,
35–68. (b) Barbaro, P.; Pregosin, P. S.; Salzmann, R.; Albinati, A.; Kunz,
R. W. Organometallics 1995, 14, 5160. (c) Herrmann, J.; Pregosin,
P. S.; Salzmann, R.; Albinati, A. Organometallics 1995, 14, 3311.
(d) Pregosin, P. S.; R€uegger, H. Magn. Reson. Chem. 1994, 32, 297–302.
(e) Pregosin, P. S.; Ruegger, H.; Salzmann, R.; Albinati, A.; Lianza, F.; Kunz,
R. W. Organometallics 1994, 13, 5040–5048. (f) Pregosin, P. S.; Ruegger,
H.; Salzmann, R.; Albinati, A.; Lianza, F.; Kunz, R. W. Organometallics
1994, 13, 83–90.
(20) Akermark, B.; Krakenberger, B.; S., H.; Vitagliano, A. Organo-
metallics 1987, 6, 620.
(21) (a) Henning, S.; Reggelin, M.; Helmchen, G. Angew. Chem. 1997,
109, 2199–2202. (b) Kollmar, M.; Goldfuss, B.; Reggelin, M.; Rominger, F.;
Helmchen, G. Chem.-Eur. J. 2001, 7, 4913–4927. (c) Kollmar, M.;
Helmchen, G. Organometallics 2002, 21, 4771–4775.
(22) (a) Malet, R.; Moreno-Manas, M.; Pajuelo, F.; Parella, T.;
Pleixats, R. Magn. Reson. Chem. 1997, 35, 227–236. (b) Malet, R.;
Moreno-Manas, M.; Parella, T.; Pleixats, R. Organometallics 1995, 14,
2463–2469.
(23) (a) Lloyd-Jones, G. C.; Stephen, S. C.; Murray, M.; Butts, C. P.;
Vyskocil, S.; Kocovsky, P. Chem.-Eur. J. 2000, 6, 4348–4357.
(b) Normand, A. T.; Stasch, A.; Ooi, L. L.; Cavell, K. J. Organometallics
2008, 27, 6507–6520.
(19) (a) Moreno, A.; Pregosin, P. S.; Veiros, L. E.; Albinati, A.;
Rizzato, S. Chem.-Eur. J 2008, 14, 5617–5629. (b) Schott, D.; Pregosin, P.
S.; Albinati, A.; Rizzato, S. Inorg. Chim. Acta 2007, 360, 3203–3212.
(c) Fernandez, I.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics
2006, 25, 4520–4529. (d) Nama, D.; Schott, D.; Pregosin, P. S.; Veiros, L. F.;
Calhorda, M. J. Organometallics 2006, 25, 4596–4604.
(24) (a) von Matt, P.; Lloyd-Jones, G. C.; Minidis, A. B. E.; Pfaltz,
€
A.; Macko, L.; Neuburger, M.; Zehnder, M.; Ruegger, H.; Pregosin,
P. S. Helv. Chim. Acta 1995, 78, 265. (b) Pregosin, P. S.; Salzmann, R.;
Togni, A. Organometallics 1995, 14, 842–847.