pubs.acs.org/joc
One-Pot Facile Synthesis of Substituted
Isoindolinones via an Ugi Four-Component
Condensation/Diels-Alder Cycloaddition/
Deselenization-Aromatization Sequence
Xian Huang*,†,‡ and Jianfeng Xu†
†Department of Chemistry, Zhejiang University (Xixi
Campus), Hangzhou 310028, People’s Republic of China, and
‡State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of
Sciences, Shanghai 200032, People’s Republic of China
Received July 27, 2009
FIGURE 1. Structures of some biological and medical active com-
pounds containing the isoindolinone scaffold.
show biological and medical activities.2 For example
(Figure 1), isoindolinone 1 is found to be a potent Cdk4
inhibitor,2a isoindolinone 2 displays modest antiproliferative
effect against HT-29 and L1210 cell lines,2b isoindolinone 3
exhibits strong sedative-hypnotic effects in mice after intra-
venous administration,2c and isoindolinone 4 is a potent
inhibitor of DNA gyrase, which shows promising anti-
bacterial activity against Gram-positive bacterial strains.2d
Traditionally, the preparation of substituted isoindoli-
nones has been carried out by the nucleophilic attack-
reduction sequence on phthalimide.3 More modern achieve-
ments in the construction of substituted isoindolinones in-
clude rhenium-catalyzed reaction of aromatic aldimines with
isocyanates,4 superacid-catalyzed aza-Nazarov reaction of
N-acyliminium ion salts,5 palladium-catalyzed aromatic
carbonylation of benzylic amines,6 and iodoamination of
R-substituted secondary 2-vinylbenzamides.7 However, these
methods involve either expensive transition metal catalysts or
multistep procedures. Therefore, alternative protocols with
mild conditions, low cost, and simple operation are desirable.
Multicomponent reactions (MCRs) have emerged as
powerful synthetic strategies for the construction of biolo-
gically interesting compounds based on their high efficiency,
rich diversity, and easy operation.8 Among them, the Ugi
four-component reaction (Ugi-4CR) has been extensively
A versatile one-pot synthesis of substituted isoindoli-
nones from 2-furaldehydes, amines, 2-(phenylselanyl)-
acrylic acids, and isocyanides is described. The tandem
process involves the Ugi four-component condensation,
intramolecular Diels-Alder cycloaddition, and sub-
sequent deselenization-aromatization promoted by
BF3-OEt2. The procedure is general and efficient and
the substrates are easily available.
Isoindolinone represents a core skeleton in a large number
of natural products and pharmacophores.1 Experience has
shown that compounds with the isoindolinone scaffold often
(1) (a) Link, J. T.; Raghavan, S.; Danishefsky, S. J. J. Am. Chem. Soc. 1995,
117, 552. (b) Kim, J. K.; Kim, Y. H.; Nam, H. T.; Kim, B. T.; Heo, J.-N. Org.
Lett. 2008, 10, 3543. (c) Wehlan, H.; Jezek, E.; Lebrasseur, N.; Pave, G.;
Roulland, E.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. J. Org. Chem.
2006, 71, 8151. (d) Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95.
(e) Yoon, U. C.; Jin, Y. X.; Oh, S. W.; Park, C. H.; Park, J. H.; Campana, C. F.;
Cai, X.; Duesler, E. N.; Mariano, P. S. J. Am. Chem. Soc. 2003, 125, 10664.
(2) (a) Honma, T.; Hayashi, K.; Aoyama, T.; Hashimoto, N.; Machida, T.;
Fukasawa, K.; Iwama, T.; Ikeura, C.; Ikuta, M.; Suzuki-Takahashi, I.;
Iwasawa, Y.; Hayama, T.; Nishimura, S.; Morishima, H. J. Med. Chem.
(3) (a) Beak, P.; Kerrick, S. T.; Donald, J. G. J. Am. Chem. Soc. 1993, 115,
10628. (b) Bousquet, T.; Fleury, J.-F.; Daich, A.; Netchitailo, P. Tetrahedron
2006, 62, 706. (c) Pearson, W. H.; Dietz, A.; Stoy, P. Org. Lett. 2004, 6, 1005.
(4) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Taka, K. J. Am. Chem.
Soc. 2006, 128, 202.
(5) Klumpp, D. A.; Zhang, Y.; O’Connor, M. J.; Esteves, P. M.; Almeid,
L. S. Org. Lett. 2007, 9, 3085.
(6) Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.; Ushito, H.;
Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Yamazaki, T.; Tokuda, M.
J. Org. Chem. 2006, 71, 5951.
ꢀ
ꢀ
2001, 44, 4615. (b) Guillaumel, J.; Leonce, S.; Pierre, A.; Renard, P.; Pfeiffer,
B.; Arimondo, P. B.; Monneret, C. Eur. J. Med. Chem. 2006, 41, 379. (c)
Kanamitsu, N.; Osaki, T.; Itsuji, Y.; Yoshimura, M.; Tsujimoto, H.; Soga, M.
Chem. Pharm. Bull. 2007, 55, 1682. (d) Lubbers, T.; Angehrn, P.; Gmunderb,
H.; Herzig, S. Bioorg. Med. Chem. Lett. 2007, 17, 4708. (e) Hamprecht, D.;
Micheli, F.; Tedesco, G.; Checchia, A.; Donati, D.; Petrone, M.; Terrenia, S.;
Wood, M. Bioorg. Med. Chem. Lett. 2007, 17, 428. (f) Lee, S.; Shinji, C.;
Ogura, K.; Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimotoa, Y.;
Miyachi, H. Bioorg. Med. Chem. Lett. 2007, 17, 4895. (g) Lee, J. H.; Byeon,
S. R.; Kim, Y. S.; Lim, S. J.; Oh, S. J.; Dae Hyuk Moon c; Yoo, K, H.; Chung,
B. Y.; Kim, D. J. Bioorg. Med. Chem. Lett. 2008, 18, 5701.
(7) Kobayashi, K.; Hase, M.; Hashimoto, K.; Fujita, S.; Tanmatsu, M.;
Morikawa, O.; Konishi, H. Synthesis 2006, 15, 2493.
(8) (a) Zhu, J., Bienayme, H. Multicomponent Reactions; Wiley-VCH:
Weinheim, Germany, 2005. (b) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.;
Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899. (c)
D'Souza, D. M.; M€uller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095. (d) Murakami,
M. Angew. Chem., Int. Ed. 2003, 42, 718.
DOI: 10.1021/jo901628a
r
Published on Web 10/27/2009
J. Org. Chem. 2009, 74, 8859–8861 8859
2009 American Chemical Society