Journal of the American Chemical Society
Page 4 of 5
ford, M. S. Tetrahedron 2006, 62, 2439. (d) Giri, R.; Shi, B.-F.; Engle, K.
the alcohol, and the Hammett analysis of the Pd(II)/bis-
sulfoxide/Cr(salen)Cl catalyzed allylic C—H oxidation reaction
reveals that reaction rate is modestly enhanced by electron-
withdrawing groups on the phenol pro-nucleophile, presumably
reflecting a more facile deprotonation (kNO2 / kH = 3.3; (kCF3 / kH =
2.0) (Schemes 2 and 3).18 Such dramatic switches in reactivity and
reaction rate trends are unlikely to be due to the different mecha-
nisms for π-allylPd formation, therefore, we take this as further
evidence of a major deviation from the classical outer-sphere
functionalization model. Although we cannot definitively rule out
all outer-sphere functionalization pathways, on the basis of evi-
dence presented we view it as highly unlikely.19 Broad nucleo-
phile scope is likely a consequence of such a metal-chelation ap-
proach, serving as a “dampening effect” for the nucleophiles’
electronic character. We have previously provided evidence that
Pd(II)/sulfoxide-catalyzed C—H functionalizations with oxygen
nucleophiles (e.g. carboxylates) proceed via an inner-sphere re-
ductive elimination step.7a,8a,9 The mechanistic findings herein
constitute further evidence for such a pathway.
In summary, we have developed a general Pd(II)/bis-
sulfoxide-catalyzed allylic oxidation method to afford for the first
time direct access to chroman, isochroman, and pyran motifs start-
ing from terminal olefins. This operationally simple method (open
to air and moisture) proceeds with high substrate generality under
uniform conditions (catalyst, solvent, temperature). Its low sensi-
tivity to the electronic nature of the alcohol nucleophile along
with inverse electronic trends observed for reaction rate relative to
outer-sphere Pd(0)-catalyzed allylic substitutions, argues for an
allylic C—H functionalization mechanism proceeding via inner-
sphere palladium coordination/activation of the oxygen nucleo-
phile and subsequent reductive elimination. We anticipate that this
general strategy will help to broaden the scope of pro-
nucleophiles used in C—H functionalization reactions.
M.; Maugel, N.; Yu, J.Q. Chem Soc. Rev. 2009, 38, 3242. (e) White, M. C.
Science 2012, 335, 807. (f) Che, C.-M., Lo, V. K.-Y.; Zhou, C.-Y.; Huang,
J.-S. Chem. Soc. Rev. 2011, 40, 1950.
1
2
3
4
5
6
7
8
(2) (a) Ellis, G. P.; Lockhart, I. M. The Chemistry of Heterocyclic Com-
pounds, Chromenes, Chromanones, and Chromones (Wiley-VCH, New
York, 2007). (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Barluenga, S.; Mitch-
ell, H. J.; Roecker, A. J.; Cao, G.-Q. J. Am. Chem. Soc. 2000, 122, 9968.
(3) (a) De Cree, J.; Geukens, H.; Leempoels, J.; Verhaegen, H. Drug Dev.
Res. 1986, 8, 109. (b) Maier, C. A.; Wünsch, B.; J. Med. Chem. 2002, 45,
4923. (c) Kuo, Y.-H.; Li, Y.-C. Chem. Pharm. Bull. 1999, 47, 299.
(4) For reviews, see: (a) Tang, Y.; Oppenheimer, J.; Song, Z.; You, L.;
Zhang, X.; Hsung, R. P. Tetrahedron, 2006, 62, 10785. (b) Shen, H. C.
Tetrahedron, 2009, 65, 3931. (c) Shi, Y.-L.; Shi, M. Org. Biomol. Chem.
2007, 5, 1499. (d) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
(5) Pd(II): (a) Hosokawa, T.; Kono, T.; Shinohara, T.; Murahashi, S.-I. J.
Organomet. Chem. 1989, 370, C13. (b) Trend, R. M.; Ramtohul, Y. K.;
Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 17778. (c) Cannon, J. S.; Ol-
son, A. C.; Overman, L. E.; Solomon, L. E. J. Org. Chem. 2012, 77, 1961.
(d) Semmelhack, M. F.; Bodurow, C. J. Am. Chem. Soc. 1984, 106, 1496.
(e) Ward, A. F.; Xu, Y.; Wolfe, J. P. Chem. Commun. 2012, 48, 609.
(6) For Pd(0), see: (a) Larock, R. C.; Berrios-Peña, R. C.; Fried, C. A.;
Yum, E. K.; Tu, C.; Leong, W. J. Org. Chem. 1993, 58, 4509. (b) Trost,
B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074. (c) Trost, B. M.;
Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276.
(d) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.; Sylvain, C. J. Am.
Chem. Soc. 2004, 126, 11966.
(7) (a) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970. (b) Reed, S. A.; White, M. C. J. Am. Chem.
Soc. 2008, 130, 3316. (c) Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.;
Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901. (d) Young, A. J.; White,
M. C. J. Am. Chem. Soc. 2008, 130, 14090. (e) Rice, G.T.; White, M.C. J.
Am. Chem. Soc. 2009, 131, 11707. (f) Braun, M.-G.; Doyle, A. G. J. Am.
Chem. Soc. 2013, 135, 12990.
(8) (a) Fraunhoffer, K.J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J.
Am. Chem. Soc. 2006, 128, 9032. (b) Gade, N. R.; Iqbal, J. Tetrahedron
Lett. 2013, 54, 4225.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2011, 133, 12584.
(10) For a seminal example of Pd-catalyzed inner-sphere acetoxylation of
cyclohexadiene, see: (a) Bäckvall, J.-E.; Byström, S. E.; Nordberg, R. E.
J. Org. Chem. 1984. 49, 4619.
(11) Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009,
131, 11701.
ASSOCIATED CONTENT
Experimentals, characterization data, and copies of 1H and 13
C
NMR spectra for all new compounds. This material is available
(12) Strambeanu, I. I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032.
(13) (a) Covell, D. J.; White, M. C. Angew. Chem. Int. Ed. 2008, 47, 6448.
(b) Hansen, K.B.; Leighton, J.L.; Jacobsen, E.N. J. Am. Chem. Soc. 1996.
118, 10924.
(14) Pd(0)-catalyzed functionalizations show diminished intermolecular
reactivity with electron deficient phenols: (a) Goux, C.; Massacret, M.;
Lhoste, P.; Sinou, D. Organometallics 1995, 14, 4585. (b) Goux, C.;
Lhoste, P.; Sinou, D. Synlett 1992, 725. (c) Fang, P.; Ding, C.-H.; Hou,
X.-L.; Dai, L.-X. Tetrahedron: Asymmetry 2010, 21, 1176.
(15) (a) Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51,
3066. (b) Bercaw, J.E.; Hazari, N.; Labinger, J.A.; Oblad, P.F. Angew.
Chem. Int. Ed. 2008, 47, 9941.
(16) For proposed metal-assisted deprotonation preceding reductive elimi-
nation in the Pd(0)-catalyzed etherification of aryl halides, see: Palucki,
M.; Wolfe, J. P.; Buchwald, S.L. J. Am. Chem Soc. 1996, 118, 10333.
(17) Trost, B.M.; Dirat, O.; Dudash Jr., J.; Hembre, E. J. Angew. Chem.
Int. Ed. 2001, 40, 3658.
(18) A KIE of 5.2 for aliphatic 9b, along with the fact that 9b shows a
more than two-fold rate increase when compared to phenol 5a, indicates
that a trend based purely on nucleophile pKa does not provide a complete
picture for all alcohols and different aspects of the nucleophilicity of alco-
hols must be considered.
AUTHOR INFORMATION
Corresponding Author
* white@scs.uiuc.edu
Funding Sources
Financial support was provided by the NIH/NIGMS (2R01 GM
076153B). SEA is the recipient of an NSF Graduate Research
Fellowship.
Notes
The authors declare no competing financial interest. GTR is
now a student at Duke Law School.
ACKNOWLEDGMENT
We thank Matt Kolaczkowski for help with substrate synthe-
sis. We thank Dr. Jennifer M. Howell for checking the experi-
mental procedure in Table 3, entry 8c.
(19) For example, attack of the protonated nucleophile onto the π-allylPd
electrophile followed by a deprotonation step would also be consistent
with electron-deficient phenols reacting at a faster rate.
REFERENCES
(1) (a) Crabtree, R. H. J. Chem Soc., Dalton Trans. 2001, 2437. (b) La-
binger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (c) Dick, A. R.; San-
ACS Paragon Plus Environment