Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
(16) MS analysis of this coupling reaction indicated predominant
formation of a disulfide corresponding to intermediate 12, which implies
that the free thiol may be undergoing an in situ protection. Reductive
disulfide cleavage likely occurs during the workup with aqueous NaSH,
which can act as a reducing agent. Minor products emanating from
perthioester intermediates were also detected. See: Liu, C. F.; Rao, C.;
Tam, J. P. Tetrahedron Lett. 1996, 37, 933–936.
Corresponding Author
’ REFERENCES
(1) Reviews: (a) Tam, J. P.; Xu, J.; Eom, K. D. Biopolymers 2001,
60, 194–205. (b) Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev.
Biophys. Biomol. Struct. 2005, 34, 91–118. (c) Hackenberger, C. P. R.;
Schwarzer, D. Angew. Chem., Int. Ed. 2008, 47, 10030–10074. (d) Kent,
S. B. H. Chem. Soc. Rev. 2009, 38, 338–351.
(17) The aziridine-containing tripeptide 24 was prepared from the
union of Tr-Azy(Me)-OH and H-Phe-Gly-NH2 (HATU, DIEA, DMF,
rt, 48% yield) followed by deprotection (TFA, (1:1) CHCl3-MeOH,
0 °C, 61% yield).
(18) A protocol for ligation at Thr via chemical ligation of a γ-thiol-
substituted N-terminal Thr peptide followed by postligation desulfur-
ization was recently reported. See ref 2m.
(2) Efforts to overcome this requirement include: (a) Tam, J. P.; Yu,
Q. Biopolymers 1998, 46, 319–327. (b) Offer, J.; Boddy, C. N. C.;
Dawson, P. E. J. Am. Chem. Soc. 2002, 124, 4642–4646. (c) Wu, B.;
Chen, J.; Warren, J. D.; Chen, G.; Hua, Z.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2006, 45, 4116–4125. (d) Botti, P.; Tchertchian, S. WO/
2006/133962, 2006. (e) Crich, D.; Banerjee, A. J. Am. Chem. Soc. 2007,
129, 10064–10065. (f) Payne, R. J.; Fichet, S.; Greenberg, W. A.; Wong,
C.-H. Angew. Chem., Int. Ed. 2008, 47, 4411–4415. (g) Okamoto, R.;
Kajihara, Y. Angew. Chem., Int. Ed. 2008, 47, 5402–5406. (h) Haase, C.;
Rohde, H.; Seitz, O. Angew. Chem., Int. Ed. 2008, 47, 6807–6810.
(i) Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2008, 47, 8521–8524. (j) Bennett, C. S.; Dean, S. M.; Payne, R. J.;
Ficht, S.; Brik, A.; Wong, C.-H. J. Am. Chem. Soc. 2008, 130, 11945–
11952. (k) Yang, R.; Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F. J. Am.
Chem. Soc. 2009, 131, 13592–13593. (l) Harpaz, Z.; Siman, P.; Kumar,
K. S. A.; Brik, A. ChemBioChem 2010, 11, 1232–1235. (m) Chen, J.;
Wang, P; Zhu, J.; Wan, Q.; Danishefsky, S. J. Tetrahedron 2010, 66,
2277–2283. (n) Shang, S.; Tan, Z.; Dong, S.; Danishefsky, S. J. J. Am.
Chem. Soc. 2011, 133, 10784–10786.
(3) Danishefsky has reported the HOBt-mediated oxidative cou-
pling of peptide thioacids and free N-terminal peptides. This method
is not compatible with unprotected sidechain amines. Wang., P.;
Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 17045–17051.
(4) Okawa, K.; Nakajima, K. Biopolymers 1981, 20, 1811–1821.
(5) Korn, A.; Rudolph-B€ohner, S.; Moroder, L. Tetrahedron 1994,
50, 1717–1730.
(6) Galonic, D. P.; Ide, N. D.; van der Donk, W. A.; Gin, D. Y. J. Am.
Chem. Soc. 2005, 127, 7359–7369.
(7) Shao, H.; Jiang, X.; Gantzel, P.; Goodman, M. Chem. Biol. 1994,
1, 231–234.
(8) The C2-selective opening of NH aziridine-2-carbonyl-termi-
nated peptides (formed in situ from β-bromoalanylpeptides) by peptide
thioacids to give a β-peptide linkage (after S- to N-acyl transfer) was
originally observed by Tam et al.: Tam, J. P.; Lu, Y. A.; Liu, C. F.; Shao, J.
Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 12485–12489.
(9) Recently, a convergent synthesis of protected peptidomimetics
via the coupling of protected peptide thioacids and protected 2-
aziridinylmethylpeptides was reported: Assem, N.; Natarajan, A.; Yudin,
A. K. J. Am. Chem. Soc. 2010, 132, 10986–10987.
(10) Ag(I) ion is known to promote the oxidative coupling of thioacids
and primary amines: (a) Schwabacher, A. W.; Bychowski, R. A. Tetrahedron
Lett. 1992, 33, 21–24. (b) Blake, J. Int. J. Pept. Protein Res. 1981, 17, 273–274.
(c) Blake, J.; Li, C. H. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4055–4058.
(11) K3Fe(CN)6, is known to promote the N-acylation of primary
amines via dithioacids: Liu, R.; Orgel, L. E. Nature 1997, 389, 52–54.
(12) Thioacid 8 was prepared from commercially available Ac-Phe-
OH [(1) NHS, DCC, DCM, rt, 4 h; (2) NaHS, MeOH, 63% yield] using
a known method: Goldstein, A. S.; Gelb, M. H. Tetrahedron Lett. 2000,
41, 2797–2800.
(13) The structure of 14 was confirmed through comparison with an
authentic sample prepared using standard peptide coupling protocols.
(14) The Fmoc protecting group was retained in this example to
facilitate quantitative determination of the epimer ratio.
(15) Peptide thioacids 17, 19, and 21 were prepared by deprotection
(TFA, DCM, Et3SiH, 0 °C) of their STmb thioester precursors in 73, 53,
and 45% yields.
20035
dx.doi.org/10.1021/ja207133t |J. Am. Chem. Soc. 2011, 133, 20033–20035