6696 Organometallics, Vol. 28, No. 23, 2009
Rosen et al.
class of ligands for a broad range of transition metals.33-43
One reason for this attention is their similar coordination
chemistry to phosphines.38,44 However, due to their strong
electron-donating abilities and unique steric parameters,
NHCs often afford complexes that are relatively stable
toward ligand displacement and show significantly improved
catalyst activities.45,46 Furthermore, NHCs can be synthe-
sized from readily available starting materials47 using ex-
tensive metal complexation methodology via free NHCs48 or
transmetalation via Ag-NHC intermediates.49 Despite
these advantages, surprisingly few redox-active NHCs and
metal complexes thereof have been reported in the literature
(see Figure 3 for examples).50-59 Bildstein and co-workers
reported60,61 the first NHC containing N-ferrocenyl groups
(A and B), but the ability of these redox-active moieties to
modulate electronic properties was not explored in detail.
Although a [W(CO)5] complex supported by 1-ferrocenyl-
3-methylbenzimidazolylidene has been prepared, its electro-
nic properties were not studied as a function of the ferrocene
oxidation state. A variety of NHC-supported complexes
bearing N-ferrocenyl substituents have been reported, but
Figure 1. Examples of metal complexes supported by redox-
active ligands.
in Figure 2 display shifts in carbonyl stretching energy
(ΔνCO) of up to 35 cm-1 1,17-19
Although correlation be-
.
tween ΔνCO and the characteristics of transition metal com-
plexes is not well-understood,20,21 ligands with a ΔνCO value
in the mid to upper end of this range often result in a
measurable influence. For example, a Re carbonyl complex
containing a 1,10-bis(diphenylphosphanyl)cobaltocene li-
gand shows ΔνCO values from -11 to -17 cm-1 11
As a
.
ꢀ
(33) Dıez-Gonzalez, S.; Nolan, S. P. Top. Organomet. Chem. 2007, 21,
47–82.
(34) Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem.,
result, nucleophilic attack on the carbonyl groups was
enhanced 200-fold upon oxidation of the metal center.
Despite their unique properties, many classes of redox-
active ligands suffer from a number of practical and funda-
mental limitations. A large majority of redox-active ligands
are either bi- or multidentate; monodentate analogues ap-
pear to be much less common.18,22,23 Although multidentate
ligands can afford stable complexes, the range of possible
geometries is often restricted. Other limitations include
difficulties associated with metal coordination and/or an
inability to impart significant electronic changes at a metal
center upon changing the oxidation state of its redox-active
ligand. Furthermore, some complexes exhibit irreversible
electrochemical behavior, inhibiting widespread use in sen-
sing and catalysis.24,25 The development of new classes of
redox-active ligands could overcome these limitations.
Over the past 50 years,26-31 N-heterocyclic carbenes
(NHCs)32 and related compounds have become a versatile
Int. Ed. 2007, 46, 2768–2813.
(35) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.;
Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101–4111.
(36) Navarro, O.; Marion, N.; Oonishi, Y.; Kelly, R. A., III; Nolan,
S. P. J. Org. Chem. 2006, 71, 685–692.
(37) Cavell, K. J.; McGuinness, D. S. Coord. Chem. Rev. 2004, 248,
671–681.
(38) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239–
2246.
(39) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309.
(40) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.;
Nolan, S. P. J. Organomet. Chem. 2002, 653, 69–82.
(41) Jørgensen, M.; Lee, S.; Liu, X.; Wolkowski, J. P.; Hartwig, J. F.
J. Am. Chem. Soc. 2002, 124, 12557–12565.
(42) Gibby, J. L. J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am.
Chem. Soc. 2002, 124, 15188–15189.
(43) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29.
(44) Herrmann, W. A.; Mihalios, D.; Ofele, K.; Kiprof, P.; Belmed-
jahed, F. Chem. Ber. Recl. 1992, 125, 1795–1799.
(45) Scott, N. M.; Clavier, H.; Mahjoor, P.; Stevens, E. D.; Nolan,
S. P. Organometallics 2008, 27, 3181–3186.
(46) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem.
(17) Yang, K.; Bott, S. G.; Richmond, M. G. Organometallics 1995,
14, 2387–2394.
(18) Miller, T. M.; Ahmed, K. J.; Wrighton, M. S. Inorg. Chem. 1989,
28, 2347–2355.
(19) Kotz, J. C.; Nivert, C. L.; Lieber, J. M.; Reed, R. C.
2000, 606, 49–54.
(47) Peris, E. Top. Organomet. Chem. 2007, 21, 83–116.
(48) Herrmann, W. A.; Kocher, K. Angew. Chem., Int. Ed. 1997, 36,
2163–2187.
(49) Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972–975.
(50) Arduengo, A. J., III; Iconaru, L. I. Dalton Trans. 2009, 6903–
6914.
(51) Arduengo, A. J., III; Tapu, D.; Marshall, W. J. J. Am. Chem.
Soc. 2005, 127, 16400–16401.
€
J. Organomet. Chem. 1975, 91, 87–95.
(20) Allgeier, A. M.; Slone, C. S.; Mirkin, C. A.; Liable-Sands, L. M.;
Yap, G. P. A.; Rheingold, A. L. J. Am. Chem. Soc. 1997, 119, 550–559.
(21) Sassano, C. A.; Mirkin, C. A. J. Am. Chem. Soc. 1995, 117,
11379–11380.
(22) Blackmore, K. J.; Lal, N.; Ziller, J. W.; Heyduk, A. F. Eur. J.
Inorg. Chem. 2009, 735–743.
(52) Arduengo, A. J., III; Bannenberg, T. P.; Tapu, D.; Marshall,
W. J. Chem. Lett. 2005, 34, 1010–1011.
(53) Arduengo, A. J., III; Tapu, D.; Marshall, W. J. Angew. Chem.,
(23) Shu, C.-F.; Wrighton, M. S. Inorg. Chem. 1988, 27, 4326–4329.
(24) Guerro, M.; Pham, N. H.; Massue, J.; Bellec, N.; Lorcy, D.
Tetrahedron 2008, 64, 5285–5290.
(25) Traill, P. R.; Bond, A. M.; Wedd, A. G. Inorg. Chem. 1994, 33,
5754–5760.
(26) Bourissou, D.; Guerret, O.; Gabbaı, F. P.; Bertrand, G. Chem.
Int. Ed. 2005, 44, 7240–7244.
(54) Arduengo, A. J., III; Tapu, D.; Marshall, W. J. Angew. Chem.
2005, 117, 7406–7410.
(55) Arduengo, A. J., III; Bannenberga, T. P.; Tapu, D.; Marshall,
W. J. Tetrahedron Lett. 2005, 46, 6847–6850.
(56) Labande, A.; Daran, J.-C.; Manoury, E.; Poli, R. Eur. J. Inorg.
Chem. 2007, 1205–1209.
Rev. 2000, 100, 39–91.
(27) Cardin, D. J.; Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F.
J. Chem. Soc., Dalton Trans. 1973, 514–522.
(57) Bertogg, A.; Camponovo, F.; Togni, A. Eur. J. Inorg. Chem.
2005, 347–356.
€
(28) Wanzlick, H.-W.; Schonherr, H.-J. Angew. Chem., Int. Ed. Engl.
(58) Gischig, S.; Togni, A. Organometallics 2004, 23, 2479–2487.
(59) Seo, H.; Kim, B. Y.; Lee, J. H.; Park, H.-J.; Son, S. U.; Chung,
Y. K. Organometallics 2003, 22, 4783–4791.
1968, 7, 141–142.
€
(29) Ofele, K. J. Organomet. Chem. 1968, 12, P42–P43.
€
(30) Winberg, H. E.; Coffman, D. D. J. Am. Chem. Soc. 1965, 87,
2776–2777.
(31) Breslow, R. J. Am. Chem. Soc. 1957, 79, 1762–1763.
(32) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1991, 113, 361–363.
(60) Bildstein, B.; Malaun, M.; Kopacka, H.; Wurst, K.; Mitterbock,
M.; Ongania, K.-H.; Opromolla, G.; Zanello, P. Organometallics 1999,
18, 4325–4336.
(61) Bildstein, B.; Malaun, M.; Kopacka, H.; Ongania, K.-H.; Wurst,
K. J. Organomet. Chem. 1999, 572, 177–187.