Natural Products
FULL PAPER
chemical derivatives of 3-hy-
droxybutene are commercially
available. However, the me-
ACHTUNGTRENNUNGtathACHTUNGTRENNUNGesis cannot be used in a
straightforward manner to
access a RAL containing a cis-
enone (vide infra). To this end,
we needed access to a cis-vinyl
halide for transmetalation or
cross-coupling reactions. As
shown in Scheme 4, p-meth-
ACHTUNGTRENNUNGoxyACHTUNGTRENNUNGbenzyl (PMB)-protection
Scheme 4. a) PMBOCNHCCl3 (1.0 equiv), CSA (0.1 equiv), CH2Cl2, 238C, 12 h, 92%; b) O3, CH2Cl2, À788C;
Ph3P (2.0 equiv), À78 to 238C, 2 h, 92%; c) Ph3PCH2I (1.25 equiv), NaHMDS (1.25 equiv), THF/HMPA
(7.7:1), 238C, 2 h, 26%; d) vinyl borolane (1.0 equiv), Grubbs-Grella II (2.5 mol%), toluene, 808C, 12 h, 92%;
e) Br2 (1.0 equiv), Et2O, À208C, 15 min; NaOMe, À208C, 30 min, 89%; f) DIBAL-H, (1.1 equiv), toluene,
of 3-hydroxybutene afforded
26 in high yield, which was
converted to 27 by ozonolysis
followed by olefination with
methyl iodide ylide. This strat-
egy was appealing as immobi-
lized versions of all reagents
used in this sequence are avail-
able;[31,32] however, the Wittig
reaction could not be per-
formed in acceptable yield
(<30%). Alternatively, cross
metathesis of 26 with vinyl
borolane[33] by using the Grela
modification[34] of the Grubbs
second-generation catalyst af-
forded the trans-vinyl borolane
28 (>20:1 E:Z), which was
stereospecifically converted to
the cis-vinyl bromide using a
À788C, 2 h, 89%; g) CBr4 (4.0 equiv), Ph3P (8.0 equiv), CH2Cl2, 08C, 45 min, 90%; h) [Pd
ACHTUNGTRENUN(NG PPh3)4] (0.2 equiv),
nBu3SnH (5.1 equiv), benzene, 238C, 1.5 h, 95%. CSA=camphorsulfonic acid, DIBAL-H=diisobutylalumini-
um hydride, HMPA=hexamethylphosphoramide, NaHMDS=sodium bis(trimethylsilyl)amide, PMB=p-me-
thoxybenzyl, THF=tetrahydrofuran.
procedure
reported
by
Brown[35] to obtain vinyl bro-
mide 29 in good yield (82%
for two steps). Conversely, the
same vinyl bromide 29 could
be obtained in four steps from
the less expensive methyl 3-hy-
droxybutyrate (30), which is
also available in both stereo-
chemistries. Thus, PMB protec-
tion followed by a diisobutyl-
aluminium hydride (DIBAL-
H) reduction and Corey–Fuchs
reaction afforded compound
31, in which the more reactive
trans-vinyl bromide was re-
duced with tributyltin hydride
under the action of palladium
tetrakis to afford 29 in excel-
lent yield.[36]
Scheme 5. a) 2-Buten-1,4-diol (2.0 equiv), Grubbs-Hoveyda II (0.01 equiv), CH2Cl2, 238C, 4 h, 85–97%; b) l-
(+) diethyltartrate (0.12 equiv), Ti
(OiPr)4 (0.1 equiv), tBuOOH (1.52 equiv), CH2Cl2, À408C,12 h, 85%; c)
SO3·py (3.5 equiv), Et3N (4.9 equiv), CH2Cl2/DMSO (4:1), 0 to 238C, 30 min; d) Ph3P=CH2 (1.9 equiv),
NaHMDS (1.8 equiv), THF, À108C, 40 min, 70% (2 steps); e) PS-SO3H (0.35 equiv), acetone, 238C, 12 h,
40%; f) ScACHTNUGTRNEG(UN OTf)3 (0.2 equiv), THF/H2O (10:1), 238C, 2.5–12 h, 50–99%; dimethoxypropane (10 equiv),
TsOH·H2O (0.05 equiv), CH2Cl2, 12 h, 238C, 70–90%; g) O3, Ph3P (2.0 equiv), CH2Cl2, À78 to 238C, 2 h, 92 %;
h) LiAlH4 (1.4 equiv), THF, 0 to 238C, 2 h, 95%; i) TBDPSCl (1.0 equiv), imidazole (1.5 equiv), DMF, 238C,
2 h, 66%; j) PS-IBX (3.0 equiv), CH2Cl2, 238C, 2 h, quantitative; k) vinylMgBr (1.5 equiv), THF, 08C, 1 h,
92%; l) EOM-Cl (8.0 equiv), iPr2NEt (8.0 equiv), TBAI (cat), CH2Cl2, 238C, 12 h, 99%; m) TBAF (2.0 equiv),
THF, 238C, 6 h, quantitative; I2 (1.5 equiv), Ph3P (1.5 equiv), imidazole (2.5 equiv), THF, 08C, 30 min, 91%; n)
29 (1.0 equiv), tBuLi (2.0 equiv), Et2O, À1008C, 30 min, 88%; o) EOM-Cl (8.0 equiv), iPr2EtN (8.0 equiv),
TBAI (cat), CH2Cl2, 238C, 6 h, 98%; p) BzCl (2.5 equiv), pyridine (2.5 equiv), TBAI (cat), CH2Cl2, 0 to 238C,
6 h, 90%. Bz=benzoyl, DMF=N,N-dimethylformamide, EOM=ethoxymethyl, IBX=2-iodobenzoicacid,
Imid=imidazole, NaHMDS=sodium bis(trimethylsilyl)amide, SAE=Sharpless asymmetric epoxidation, PS=
polymer supported, Py=pyridine, TBAF=tetrabutylammonium fluoride, TBAI=Tetrabutylammonium
iodide, TBDPS=tert-butyldiphenylsilyl, THF=tetrahydrofuran, Tos=Tosyl.
A number of resorcylides contain an allylic or homoallylic
anti-diol moiety in the macrocycle. We had previously
shown[37] that such acetonide-protected diols could be con-
veniently obtained starting from the alkene bromide 32
(Scheme 5) in six steps via allylic epoxide 35 through using a
sequence involving cross metathesis with 1,4-butenediol,
Sharpless epoxidation, oxidation, olefination, and stereose-
lective opening of the epoxide 35.[37] This epoxide could be
opened by using protic or Lewis acid conditions, such as Sc-
AHCTUNGRTEG(NNUN OTf)3, followed by acetonide protection to obtain 38. Most
Chem. Eur. J. 2009, 15, 11490 – 11497
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
11493