6790
T. T. Nguyen et al. / Tetrahedron Letters 50 (2009) 6787–6790
13. Usui, S.; Hashimoto, Y.; Morey, J. V.; Wheatley, A. E. H.; Uchiyama, M. J. Am.
Chem. Soc. 2007, 129, 15102–15103.
28. The spectral data are analogous to those previously described: Inamoto, K.;
Katsuno, M.; Yoshino, T.; Arai, Y.; Hiroya, K.; sakamoto, T. Tetrahedron 2007, 63,
2695–2711.
14. (a) L’Helgoual’ch, J.-M.; Bentabed-Ababsa, G.; Chevallier, F.; Yonehara, M.;
Uchiyama, M.; Derdour, A.; Mongin, F. Chem. Commun. 2008, 5375–5377;
(b) Snégaroff, K.; L’Helgoual’ch, J.-M.; Bentabed-Ababsa, G.; Nguyen, T. T.;
Chevallier, F.; Yonehara, M.; Uchiyama, M.; Derdour, A.; Mongin, F. Chem.
Eur. J. 2009, 15, 10280–10290; See also: (c) L’Helgoual’ch, J.-M.; Bentabed-
Ababsa, G.; Chevallier, F.; Derdour, A.; Mongin, F. Synthesis 2008, 4033–
4035; (d) Bentabed-Ababsa, G.; Blanco, F.; Derdour, A.; Mongin, F.;
Trécourt, F.; Quéguiner, G.; Ballesteros, R.; Abarca, B. J. Org. Chem. 2009,
74, 163–169.
15. We chose CuCl2 as copper salt source instead of CuCl because of its higher air
stability. In addition, the presence of TMEDA makes salts less sensitive to
moisture, and sometimes favors deprotonation reactions: see Refs. 7d–f. For
the synthesis of CuCl2ꢀTMEDA, see: Handley, D. A.; Hitchcock, P. B.; Lee, T. H.;
Leigh, G. J. Inorg. Chem. Acta 2001, 316, 59–64.
29. The 1H NMR data are analogous to those described: Güngör, T.; Marsais, F.;
Quéguiner, G. J. Organomet. Chem. 1981, 215, 139–150.
30. The 1H NMR data are analogous to those described: Trécourt, F.; Marsais, F.;
Güngör, T.; Quéguiner, G. J. Chem. Soc., Perkin Trans. 1 1990, 2409–2415.
31. Compound 11a: yellow powder; mp 90 °C; 1H NMR (300 MHz, CDCl3): d 7.37
(ddd, 1H, J = 7.6, 4.9, and 1.9 Hz), 7.44–7.50 (m, 2H), 7.73–7.79 (m, 2H), 8.04
(ddd, 1H, J = 9.4, 7.5, and 2.0 Hz), 8.43 (ddd, 1H, J = 4.9, 2.1, and 1.2 Hz); 13C
NMR (75 MHz, CDCl3): d 121.3 (d, J = 30 Hz), 121.9 (d, J = 4.5 Hz), 129.2 (s, 2C),
131.1 (d, 2C, J = 1.2 Hz), 135.0 (d, J = 0.9 Hz), 140.7 (s), 142.0 (d, J = 3.3 Hz),
150.9 (d, J = 15 Hz), 160.1 (d, J = 243 Hz), 190.7 (d, J = 4.9 Hz).
32. Compound 13a: beige powder; mp 153 °C; 1H NMR (300 MHz, CDCl3): d 7.31–
7.36 (m, 2H), 7.88–7.96 (m, 2H), 8.30 (dd, 2H, J = 4.9, and 1.9 Hz); 13C NMR
(75 MHz, CDCl3): d 116.7 (m), 121.7 (m), 142.0 (t, J = 3.3 Hz), 148.1 (m), 160.4
(d, J = 241 Hz).
33. Mandeville, W. H.; Whitesides, G. M. J. Org. Chem. 1974, 39, 400–405.
34. Even if the basicity of pyrimidine nitrogens is low compared with that of
pyridine, competitive quaternarization by reaction with allyl bromide and
methyl iodide is not impossible under the conditions used.
16. James, A. M.; Laxman, R. V.; Fronczek, F. R.; Maverick, A. W. Inorg. Chem. 1998,
37, 3785–3791.
17. The reaction of lithiated organics with molecular oxygen is well-documented:
Wheatley, A. E. H. Chem. Soc. Rev. 2001, 30, 265–273. The process is thought to
involve
a radical chain decomposition in which a peroxide intermediate
degrades to an organooxide product.
18. An organic radical was also observed (g = 2.005, aH = 1.096 G, 2H), but was not
35. Compound 15: yellow oil; 1H NMR (300 MHz, CDCl3): d 3.95 (s, 3H), 4.07 (s,
3H), 7.42–7.49 (m, 2H), 7.58 (tt, 1H, J = 7.3 and 1.3 Hz), 7.74–7.78 (m, 2H), 8.46
(br s, 1H); 13C NMR (75 MHz, CDCl3): d 54.5, 55.5, 114.5, 128.5 (2C), 129.7 (2C),
133.3, 137.6, 161.2, 166.3, 169.3, 192.2. Compound 16: yellow powder; mp
145–146 °C; 1H NMR (300 MHz, CDCl3): d 8.48 (s, 1H), 7.68–7.73 (m, 2H), 7.41–
7.46 (m, 2H), 4.08 (s, 3H), 3.96 (s, 3H); 13C NMR (75 MHz, CDCl3): d 54.5, 55.5,
114.1, 128.8 (2C), 130.9 (2C), 136.0, 139.7, 161.3, 166.5, 169.1, 190.9.
Compound 17: yellow oil; 1H NMR (300 MHz, CDCl3): d 3.22 (m, 2H), 3.96 (s,
3H), 3.97 (s, 3H), 5.00–5.08 (m, 2H), 5.82–5.97 (m, 1H), 7.98 (br s, 1H); 13C NMR
(75 MHz, CDCl3): d 29.8, 54.0, 54.8, 113.6, 116.5, 135.2, 157.0, 164.4, 169.4.
Compound 19: red powder; mp 209 °C; 1H NMR (300 MHz, CDCl3): d 3.97 (s,
6H), 4.03 (s, 6H), 8.20 (s, 2H); 13C NMR (75 MHz, CDCl3): d 54.3 (2C), 55.0 (2C),
108.3 (2C), 158.8 (2C), 165.1 (2C), 168.7 (2C).
identified:
36. The spectral data are analogous to those previously described: Boudet, N.;
Dubbaka, S. R.; Knochel, P. Org. Lett. 2008, 10, 1715–1718.
19. TEMPO is similarly formed by preparing LiTMP in THF.
37. Typical procedure: To a stirred, cooled (0 °C) suspension of CuCl2ꢀTMEDA
(0.25 g, 1.0 mmol) in THF (5 mL) were successively added BuLi (about 1.6 M
hexanes solution, 1.0 mmol) and, 15 min later, a solution of LiTMP prepared in
THF (2 mL) at 0 °C from 2,2,6,6-tetramethylpiperidine (0.34 mL, 2.0 mmol) and
BuLi (about 1.6 M hexanes solution, 2.0 mmol). The mixture was stirred for
15 min at this temperature before introduction of 2,4-dimethoxypyrimidine
20. The spectral data are analogous to those obtained from a commercial sample.
21. The 1H NMR data are analogous to those described: Azadi-Ardakani, M.;
Wallace, T. W. Tetrahedron 1988, 44, 5939–5952.
22. The physical and spectral data are analogous to those previously described:
Yuan, Y.; Bian, Y. Appl. Organomet. Chem. 2008, 22, 15–18.
23. 1H NMR (300 MHz, CDCl3): d 0.78 (s, 6H), 1.23 (s, 6H), 1.49–1.64 (m, 6H), 3.75
(s, 3H), 6.82–6.88 (m, 2H), 7.13–7.19 (m, 1H), 7.29 (dd, 1H, J = 8.3 and 1.9 Hz);
13C NMR (75 MHz, CDCl3): d 18.6, 26.0, 31.5, 41.8, 54.4, 55.1, 111.0, 119.3,
126.4, 134.2, 136.0, 160.3.
(125 lL, 1.0 mmol). After 2 h at room temperature, benzoyl chloride (0.24 mL,
2.0 mmol) was added at 0 °C. The mixture was stirred for 16 h at 60 °C before
the addition of brine (5 mL) and extracted with Et2O (3 ꢂ 10 mL). The
combined organic layers were washed with brine (10 mL), dried over
Na2SO4, filtered, and concentrated under reduced pressure before
purification by column chromatography on silica gel (eluent: heptane/EtOAc
8:2). Compound 15 (0.11 g, 45%) was isolated as a yellow oil.
24. The 1H NMR data are analogous to those described: Ochiai, M.; Fujita, E.;
Arimoto, M.; Yamaguchi, H. Chem. Pharm. Bull. 1982, 30, 3994–3999.
25. The 1H NMR data are analogous to those described: Chen, X.; Yu, M.; Wang, M.
J. Chem. Res. 2005, 80–81.
38. Forbes, G. C.; Kennedy, A. R.; Mulvey, R. E.; Rodger, P. J. A. Chem. Commun. 2001,
1400–1401; See also: Balloch, L.; Drummond, A. M.; García-Álvarez, P.;
Graham, D. V.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; O’Hara, C. T.; Rodger, P.
J. A.; Rushworth, I. D. Inorg. Chem. 2009, 48, 6934–6944.
26. The spectral data are analogous to those previously described: Waterlot, C.;
Hasiak, B.; Couturier, D.; Rigo, B. Tetrahedron 2001, 57, 4889–4901.
27. The spectral data are analogous to those previously described: Rao, M. L. N.;
Venkatesh, V.; Banerjee, D. Tetrahedron 2007, 63, 12917–12926.