10630
H. Fujii et al. / Tetrahedron 65 (2009) 10623–10630
in THF (12 mL), which was prepared from 4-bromoveratrole
(1.5 mL, 10.4 mmol) and 1.6 M solution of n-BuLi in hexane
(6.3 mL, 10.1 mmol), was added the solution of compound 29
(1.04 g, 4.5 mmol) in THF (5 mL) dropwise at ꢂ78 ꢁC, and stirred
at the same temperature for 1 h and at rt for 21 h. The reaction
mixture was poured into saturated NaHCO3 solution and extrac-
ted with AcOEt. The combined organic layers were washed with
distillated water and brine, and then dried over anhydrous
Na2SO4 followed by removing the solvent under reduced pres-
sure. The residue was purified by silica gel column chromatog-
raphy (hexane/AcOEt¼3/1) to give the title compound 30
(917 mg, 57%) as a colorless oil. 1H NMR (300 MHz, acetone-d6)
HRMS (ESI): [MþNa]þ Calcd for C22H28NaO4: 379.1885. Found:
379.1874.
Acknowledgements
We acknowledge the Institute of Instrumental Analysis of Kita-
sato University, School of Pharmacy for its facilities. We also ac-
knowledge Grant-in-Aid for Scientific Research (C) (19590105) and
the Uehara Memorial Foundation for financial support.
References and notes
d
ꢂ0.02–0.07 (m, 2H), 0.27–0.37 (m, 2H), 0.68–0.83 (m, 1H), 2.21
1. (a) Freifelder, M. Practical Catalytic Hydrogenation; Wiley & Sons: New York, NY,
1971; p 254–530; (b) Newham, J. Chem. Rev. 1962, 63, 123; (c) Wong, H. N. C.;
Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
2. For recent examples: (a) Harmata, M.; Rashatasakhon, P. Org. Lett. 2000, 2, 2913;
(b) Harrowven, D. C.; Lucas, M. C.; Howes, P. D. Tetrahedron 2001, 57, 9157; (c)
Mehta, G.; Murthy, A. S. K.; Umarye, J. D. Tetrahedron Lett. 2002, 43, 8301; (d)
Karimi, S.; Tavares, P. J. Nat. Prod. 2003, 66, 520; (e) Taber, D. F.; Frankowski, K. J. J.
Org. Chem. 2005, 70, 6417; (f) Harmata, M.; Rashatasakhon, P.; Barnes, C. L. Can. J.
Chem. 2006, 84, 1456; (g) Taber, D. F.; Tian, W. J. Org. Chem. 2008, 73, 7560.
3. For recent examples: (a) Robl, J. A.; Cimarusti, M. P.; Simpkins, L. M.; Brown, B.;
Ryono, D. E.; Eileen Bird, J.; Asaad, M. M.; Schaeffer, T. R.; Trippodo, N. C. J. Med.
Chem. 1996, 39, 494; (b) Hendrata, S.; Bennett, F.; Huang, Y.; Sannigrahi, M.;
Pinto, P. A.; Chan, T.; Evans, C. A.; Osterman, R.; Buevich, A.; McPhail, A. T.
Tetrahedron Lett. 2006, 47, 6469; (c) Irie, O.; Yokokawa, F.; Ehara, T.; Iwasaki, A.;
Iwaki, Y.; Hitomi, Y.; Konishi, K.; Kishida, M.; Toyao, A.; Masuya, K.; Gunji, H.;
Sakaki, J.; Iwasaki, G.; Hirao, H.; Kanazawa, T.; Tanabe, K.; Kosaka, T.; Hart, T. W.;
Hallett, A. Bioorg. Med. Chem. Lett. 2008, 18, 4642.
4. For recent other examples: (a) Kozhushkov, S. I.; Kostikov, R. R.; Molchanov, A.
P.; Boese, R.; Benet-Buchholz, J.; Schreiner, P. R.; Rinderspacher, C.; Ghiviriga, I.;
de Meijere, A. Angew. Chem., Int. Ed. 2001, 40, 180; (b) de Meijere, A.; von
Seebach, M.; Zo¨llner, S.; Kozhushkov, S. I.; Belov, V. N.; Boese, R.; Haumann, T.;
Benet-Buchholz, J.; Yufit, D. S.; Howard, J. A. K. Chem.dEur. J. 2001, 7, 4021; (c)
Carrasco, H.; Foces-Foces, C.; Pe´rez, C.; Rodrı´guez, M. L.; Martı´n, J. D. J. Am.
Chem. Soc. 2001, 123, 11970; (d) Fo¨hlisch, B.; Bakr, D. A.; Fischer, P. J. Org. Chem.
2002, 67, 3682; (e) Anderson, J. E.; de Meijere, A.; Kozhushkov, S. I.; Lunazzi, L.;
Mazzanti, A. J. Am. Chem. Soc. 2002, 124, 6706; (f) Kozhushkov, S. I.; Yufit, D. S.;
Boese, R.; Bla¨ser, D.; Schreiner, P. R.; de Meijere, A. Eur. J. Org. Chem. 2005, 1409;
(g) Li, W. Z.; Yang, Y. Org. Lett. 2005, 7, 3107; (h) Kuethe, J. T.; Zhao, D.; Hum-
phrey, G. R.; Journet, M.; McKeown, A. E. J. Org. Chem. 2006, 71, 2192.
5. Fujii, H.; Osa, Y.; Ishihara, M.; Hanamura, S.; Nemoto, T.; Nakajima, M.; Hasebe,
K.; Mochizuki, H.; Nagase, H. Bioorg. Med. Chem. Lett. 2008, 18, 4978.
6. pKa values: acetic acid: 4.76, trifluoroacetic acid: ꢂ0.6, methanesulfonic acid:
ꢂ1.9, perchloric acid: ꢂ5.0, hydrochloric acid: ꢂ8, hydrobromic acid: ꢂ9, hy-
droiodic acid: ꢂ10 Miller, A. In Writing Reaction Mechanisms in Organic Chem-
istry; Academic Press: San Diego, 1992; pp 35–42.
(d, J¼6.3 Hz, 2H), 2.84 (s, 1H), 3.75 (s, 6H), 3.77 (s, 6H), 6.84 (d,
J¼8.4 Hz, 2H), 6.99 (dd, J¼2.1, 8.4 Hz, 2H), 7.15 (d, J¼2.1 Hz, 2H). IR
(neat, cmꢂ1): 3519, 3000, 2935, 2835, 1604, 1590, 1514, 1464, 1412,
1329, 1256, 1141, 1027, 763. HRMS (ESI): [MþNa]þ Calcd for
C21H26NaO5: 381.1677. Found: 381.1678.
4.26.3. 4,40-(2-Cyclopropylethane-1,1-diyl)bis(1,2-dimethoxy-
benzene) (17). To the solution of compound 30 (105 mg, 0.3 mmol)
in MeOH (3 mL) was added 10% Pd/C (64 mg) and stirred at rt for
36 h under H2. After removing the catalyst by filtration, the filtrate
was concentrated under reduced pressure. The residue was purified
by preparative TLC (hexane/AcOEt¼2/1) to give the title compound
17 (86 mg, 86%) as a colorless oil. 1H NMR (300 MHz, CDCl3)
d 0.02–
0.11 (m, 2H), 0.35–0.44 (m, 2H), 0.53–0.68 (m, 1H), 1.88 (t, J¼7.4 Hz,
2H), 3.83 (s, 6H), 3.84 (s, 6H), 3.93 (t, J¼7.7 Hz, 1H), 6.70–6.84 (m,
6H). IR (neat, cmꢂ1): 2998, 2932, 2834, 1589, 1515, 1464, 1415, 1260,
1144, 1029. HRMS (FAB): [M]þ Calcd for C21H26O4: 342.1831. Found:
342.1832.
4.27. 4,40-(3-Cyclopropylpropane-1,1-diyl)bis(1,2-
dimethoxybenzene) (19)
4.27.1. Naphthalen-1-yl 3-cyclopropylpropanoate (31). To the solu-
tion of ethyl chloroformate (0.3 mL, 3.1 mmol) and Et3N (2 mL,
14.3 mmol) in CH2Cl2 (10 mL) was added 3-cyclopropylpropanoic
acid (288 mg, 2.5 mmol) at 0 ꢁC and stirred at the same tempera-
ture for 1 h. To the reaction mixture was added the solution of 1-
naphthol (880 mg, 6.1 mmol) and stirred at rt for 15 h. The reaction
mixture was poured into 1 M HCl solution and extracted with
CH2Cl2. The combined organic layers were washed with distillated
water and dried over anhydrous Na2SO4, followed by removing the
solvent under reduced pressure. The residue was purified by silica
gel column chromatography (hexane/AcOEt¼5/1) to give the title
compound 31 (491 mg, 81%) as a colorless oil. 1H NMR (300 MHz,
7. Hydroiodic acid or iodine reportedly functioned as a rhodium or palladium
catalyst poison, respectively; (a) Freedman, L. D.; Doak, G. O.; Petit, E. L. J. Am.
Chem. Soc. 1955, 77, 4262; (b) Caddock, P. D.; Joyner, R. W.; Williams, B. P. Catal.
Lett. 1989, 2, 27.
8. MaloneyHuss, K. E.; Portoghese, P. S. J. Org. Chem. 1990, 55, 2957.
9. (a) Gates, M.; Montzka, T. A. J. Med. Chem. 1964, 7, 127; (b) Osa, Y.; Ida, Y.; Yano,
Y.; Furuhata, K.; Nagase, H. Heterocycles 2006, 69, 271.
10. (a) Gould, E. S. Mechanism and Structure in Organic Chemistry; Henry Holt: New
York, NY, 1959; p 561–617; (b) Richey, H. G., Jr. In Carbonium Ions; Olah, G. A.,
Schleyer, P. R., Eds.; John Wiley & Sons: Canada, 1972; Vol. III, pp 1201–1294; (c)
Olah, G. A.; Prakash Reddy, V.; Surya Prakash, G. K. Chem. Rev. 1992, 92, 69.
11. Nagase, H.; Yamamoto, N.; Nemoto, T.; Yoza, K.; Kamiya, K.; Hirono, S.; Momen, S.;
Izumimoto, N.; Hasebe, K.; Mochizuki, H.; Fujii, H. J. Org. Chem. 2008, 73, 8093.
12. It is known that treatment of aryl cyclopropylmethyl ether with hydrochloric
acid in methanol under reflux conditions resulted in cleavage of cyclo-
propylmethyl ether bond; (a) Wuts, P. G. M.; Greene, T. W. In Greene’s Protective
Groups in Organic Synthesis; John Wiley & Sons: New Jersey, 2007; p 390; (b)
Nagata, W.; Okada, K.; Itazaki, H.; Uyeo, S. Chem. Pharm. Bull. 1975, 23, 2878.
13. Generally speaking, the cyclopropylmethyl tosylate is solvolyzed 106 faster than
isobutyl tosylate because the tosylate ion could be solvolitically eliminated from
the cyclopropylmethyl tosylate to afford the very stable cyclopropylcarbinyl
cation. In Mechanism and Theory in Organic Chemistry, 3rd ed.; Lowry, T. H.,
Richardson, K. S., Eds.; Harper & Row: New York, NY, 1987; p 425–515.
14. The reduction of cyclopropylmethylamine 9a (50 mg) gave 49 mg of crude
product. 1H NMR spectra of crude product showed decrease in signals indicating
cyclopropane ring, but value of integral stemmed from aromatic protons was
smaller than the theoretical value. Aliphatic methoxy signal (around 3.4 ppm)
and increase invalue of integral derived from aliphatic protons(around1–2 ppm)
were also observed. Taken together, these observations strongly suggest that
reduction of benzene ring would proceed concomitantly.
CDCl3)
d 0.12–0.28 (m, 2H), 0.46–0.64 (m, 2H), 0.81–0.99 (m, 1H),
1.79 (q, J¼7.5 Hz, 2H), 2.86 (t, J¼7.5 Hz, 2H), 7.27 (dd, J¼1.1, 7.4 Hz,
1H), 7.45–7.57 (m, 3H), 7.75 (d, J¼8.4 Hz, 1H), 7.84–7.94 (m, 2H). IR
(neat, cmꢂ1): 3068, 3001, 2925, 1760, 1509, 1390, 1358, 1258, 1224,
1115, 1014, 796, 770. HRMS (FAB): [MþH]þ Calcd for C16H17O2:
241.1229. Found: 241.1230.
4.27.2. 4,40-(3-Cyclopropylpropane-1,1-diyl)bis(1,2-dimethox-
ybenzene) (19). Compound 19 was synthesized from compound 31
in 47% yield according to the synthetic method of compound 17 from
29. A colorless oil. 1H NMR (300 MHz, CDCl3)
d
ꢂ0.09–0.01 (m, 2H),
0.30–0.48 (m, 2H), 0.60–0.76 (m,1H),1.10–1.22 (m, 2H), 2.02–2.18 (m,
2H), 3.77–3.87 (m, 1H), 3.83 (s, 12H), 6.71–6.83 (m, 6H). IR (neat,
cmꢂ1): 2997, 2931, 2834, 1589, 1515, 1463, 1415, 1257, 1143, 1029.