978
R. A. Mekheimer et al. · Fused Quinoline Heterocycles
NH2), 7.19 (t, 1H, J = 7.8 Hz, 1H Ar), 7.49 (d, 1H, J = 8 Hz,
M. p. 326 – 328 ◦C (decomp.). – IR: ν = 3330, 3200 (NH,
1
1H Ar), 7.56 (t, 1H, J = 7.8 Hz, 1H Ar), 7.83 (d, 1H, J = 8 Hz, NH2) cm−1. – H NMR (400 MHz, [D6]DMSO): δ = 5.87
1H Ar). – MS (EI, 70 eV): m/z (%) = 213 (18) [M+1]+, 212 (s, 2H, NH2), 7.64 (m, 2H Ar), 8.01 (d, 1H, J = 7 Hz, 1H Ar),
(100) [M]+. – C12H12N4 (212.3): calcd. C 67.90, H 5.70, 8.25 (d, 1H, J = 7 Hz, 1H Ar), 9.11 (s, 2H, NH2), 12.82 (br
N 26.40; found C 67.78, H 5.88, N 26.53.
s, 1H, NH). – MS (EI, 70 eV): m/z (%) = 200 (14) [M+1]+,
199 (36) [M]+. – C10H9N5 (199.2): calcd. C 60.29, H 4.55,
N 35.16; found C 60.40, H 4.37, N 35.32.
2-Amino-4-(diethylamino)quinoline-3-carbonitrile (8c)
◦
M. p. 149 – 150 C. Yield: 73 %. – IR: ν = 3408, 3328,
3152 (NH2); 2960 (aliph. CH), 2210 (CN) cm−1. – 1H NMR
(400 MHz, [D6]DMSO): δ = 1.11 (t, 6H, J = 6.8 Hz, 2CH3),
3.57 (q, 4H, J = 6.8 Hz, 2CH2), 6.65 (s, 2H, NH2), 7.20 (t,
1H, J = 7.3 Hz, 1H Ar), 7.47 (d, 1H, J = 8.2 Hz, 1H Ar),
7.57 (t, 1H, J = 7.3 Hz, 1H Ar), 7.82 (d, 1H, J = 8.2 Hz, 1H
Ar). – 13C NMR (100 MHz, [D6]DMSO): δ = 13.3 (2CH3),
46.9 (2CH2), 89.2 (C-3), 117.2 (CN), 119.8 (C-4a), 121.9,
125.0, 126.4, 132.0 (Ar-C), 150.5 (C-8a), 157.4 (C-4), 162.4
(C-2). – MS (EI, 70 eV): m/z (%) = 241 (14) [M+1]+, 240
(80) [M]+. – C14H16N4 (240.3): calcd. C 69.97, H 6.71,
N 23.32; found C 70.13, H 6.59, N 23.47.
3-Azido-1H-1,2,4,5,6,6a-hexaazabenzo[a]indacene (13)
A solution of 11 (0.3 g, 1.51 mmol) in H2SO4 (4 mL,
70 %) was cooled until the temperature of the solution
was −5 ◦C and treated with sodium nitrite (0.313 g,
4.53 mmol) in water (1 mL). To the resulting solution of the
diazonium salt was added sodium azide (0.295 g, 4.53 mmol)
◦
in water (1 mL) and the mixture maintained at 0 to −5 C.
Stirring was then continued for 1 h at r. t. The resulting solid
product was collected by filtration and dissolved in H2O. The
solution was neutralized with dil. Na2CO3 solution, and the
precipitated solid product was collected by filtration, washed
well with H2O, dried and recrystallized from acetone to af-
ford compound 13.
3,4-Diamino-1H-pyrazolo[4,3-c]quinoline (11)
M. p. 196 – 197 ◦C (decomp.). Yield: 75 %. – IR: ν =
3200 (NH), 3008 (arom. CH), 2130 (N3) cm−1. – 1H NMR
(400 MHz, [D6]DMSO): δ = 7.77 (t, 1H, J = 7.5 Hz, 1H Ar),
7.87 (t, 1H, J = 7.5 Hz, 1H Ar), 8.25 (d, 1H, J = 8.0 Hz, 1H
Ar), 8.44 (d, 1H, J = 8.0 Hz, 1H Ar), 14.47 (s, 1H, pyrazole
NH). – MS (EI, 70 eV): m/z (%) = 251 (7) [M]+. – C10H5N9
(251.2): calcd. C 47.81, H 2.01, N 50.18; found C 48.02,
H 1.89, N 50.34.
A mixture of 8a – c (1.25 mmol) and hydrazine hydrate
(5 mL; 80 %) was refluxed for 5 h, until TLC showed the
disappearance of the starting compounds. After cooling, the
mixture was evaporated to dryness in vacuo. Water (3 mL)
was added to the remaining oily residue with scratching. The
resulting product was isolated by suction, washed with H2O,
dried and recrystallized from DMF. The product was ob-
tained in 80 – 86 % yield.
[1] P. K. Mahata, C. Venkatesh, U. K. Syam Kumar, H. Ila,
H. Junjappa, J. Org. Chem. 2003, 68, 3966.
[2] T. Ulven, P. B. Little, J.-M Receveur, T. M. Frimurer,
Ø. Rist, P. K. Nørregaard, T. Ho¨gberg, Bioorg. Med.
Chem. Lett. 2006, 16, 1070.
[3] T. Ulven, T. M. Frimurer, J. M. Receveur, P. B. Little,
Ø. Rist, P. Nørregaard, T. Ho¨gberg, J. Med. Chem.
2005, 48, 5684.
[4] D. E. Clark, C. Higgs, S. P. Wren, H. J. Dyke, M. Wong,
D. Norman, P. M. Lockey, A. G. Roach, J. Med. Chem.
2004, 47, 3962.
senti, W. Pastori, A. Marsiglio, K. L. Leach, P. M.
Clare, F. Fiorentini, M. Varasi, A. Vulpetti, M. A. War-
pehoski, J. Med. Chem. 2004, 47, 3367.
[8] P. Pevarello, M. G. Brasca, P. Orsini, G. Traquandi,
A. Longo, M. Nesi, F. Orzi, C. Piutti, P. Sansonna,
M. Varasi, A. Cameron, A. Vulpetti, F. Roletto,
R. Alzani, M. Ciomei, C. Albanese, W. Pastori, A. Mar-
siglio, E. Pesenti, F. Fiorentini, J. R. Bischoff, C. Mer-
curio, J. Med. Chem. 2005, 48, 5058.
[9] H. J. Lankan, M. Menzer, A. Rostock, T. Arnold,
C. Rundfeldt, K. Unverferth, Arch. Pharm. 1999, 332,
219.
[5] R. Arienzo, D. E. Clark, S. Cramp, S. Daly, H. J.
Dyke, P. Lockey, D. Norman, A. G. Roach, K. Stut-
tle, M. Tomlinson, M. Wong, S. P. Wren, Bioorg. Med.
Chem. Lett. 2004, 14, 4099.
[10] B. Baruah, K. Dasu, B. Vaitilingam, A. Vanguri, S. R.
Casturi, K. R. Yeleswarapu, Bioorg. Med. Chem. Lett.
2004, 14, 445.
[6] S. Paul, M. Gupta, R. Gupta, A. Loupy, Tetrahedron
Lett. 2001, 42, 3827.
[7] P. Pevarello, M. G. Brasca, R. Amici, P. Orsini,
G. Traquandi, L. Corti, C. Piutti, P. Sansonna, M. Villa,
B. S. Pierce, M. Pulici, P. Giordano, K. Martina,
E. L. Fritzen, R. A. Nugent, E. Casale, A. Cameron,
M. Ciomei, F. Roletto, A. Isacchi, G. Fogliatto, E. Pe-
[11] N. Yokoyama, Eur. Patent 22078, Chem. Abstr. 1981,
95, 7278s.
[12] I. Ueda, Y. Shiokawa, T. Manabe, Y. Katsura, Eur.
Patent 180352, Chem. Abstr. 1986, 105, 78931k.
[13] M. Gal, O. Feher, E. Tihanyl, G. Horvath, G. Jerkovich,
Tetrahedron 1982, 38, 2933.
[14] B. Daou, M. Soufiaoui, Tetrahedron 1989, 45, 3351.
Unauthenticated
Download Date | 1/14/16 6:55 AM