M. J. López Rivilli et al. / Tetrahedron Letters 51 (2010) 478–481
481
amount of isomer 7e may result from the first deprotonation of
References and notes
secondary amine and the favored displacement of halogen from
the N-2 nucleophilic centre. When triethylamine (TEA) was used
as base, the relative ratio of isomers for each pyrazoloquinolinone
was modified. Thus, in the case of the reaction of 4a, by using
2 equiv of TEA, the formation of isomer 6d in the amount similar
to that of the reactions with sodium methoxide was favored. When
only 1 equiv of base was employed, the proportion of isomer 6e in-
creased due to a better deprotonation of N-2 in the hydrochloride
salt. In the reactions of substrate 4b, the effect of TEA as base was
particularly noticeable. Thus, by using 1 equiv of base, isomer 7d
was not detected, and the reaction gave rise selectively and exclu-
sively to regioisomeric pyrazoloquinolinone 7e. It should be noted
that the reactions with TEA were completed in 4 h, whereas the
transformations with NaOMe were completed in 1.5 h.
These results show that the regiochemistry of the reaction de-
pends on the nature of the base reagent and on the amount em-
ployed in the neutralization of the starting hydrazine. A similar
behavior was found in the reaction of 3-acyl-4-methoxy-quinoli-
nones with N-substituted hydrazines to prepare 2,5-dihydro-4H-
pyrazolo[4,3-c]quinolinones.16 Here the regioselectiviy of the reac-
tion changes markedly if free hydrazine or hydrazine hydrochloride
is used as a base. On the other hand, a regioselective behavior was
analyzed in the synthesis of pyrazolo[4,3-c]pyrrolo[3,2-f]quinolin-
3-one derivatives where the use of methylhydrazine favored the
N-1-methyl isomer and the use of arylhydrazines exclusively fa-
vored N-2-aryl isomers.17,18
1. Hadjipavlou-Litina, D.; Garg, R.; Hansch, C. Chem. Rev. 2004, 104, 3751–3793.
2. Primofiore, G.; Da Settimo, F.; Marini, A.; Taliani, S.; La Motta, C.; Simorini, F.;
Novellino, E.; Greco, G.; Cosimelli, B.; Ehlardo, M.; Sala, A.; Besnard, F.; Montali,
M.; Martini, C. J. Med. Chem. 2006, 49, 2489–2495.
3. (a) Huang, Q.; He, X.; Ma, C.; Liu, R.; Yu, S.; Dayer, C. A.; Wenger, G. R.;
McKernan, R.; Cook, J. M. J. Med. Chem. 2000, 43, 71–95; (b) He, X.; Huang, Q.;
Ma, C.; Yu, S.; Mckernan, R.; Cook, J. Drug Des. Discovery 2000, 17, 131–171; (c)
He, X.; Huang, Q.; Yu, S.; Ma, C.; Mckernan, R.; Cook, J. Drug Des. Discovery 1999,
16, 77–91; (d) Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Marini, A.;
Novellino, E.; Grecco, G.; Martini, G.; Giannaccini, G.; Luccacchini, A. J. Med.
Chem. 1996, 39, 5083–5091.
4. Sternbach, L. J. Med. Chem. 1979, 22, 1–7.
5. Yokoyama, N.; Ritter, B.; Neubert, D. J. Med. Chem. 1982, 25, 337–339.
6. Catarzi, D.; Cecchi, L.; Colotta, V.; Filacchioni, G.; Varano, F.; Martini, C.; Giusti,
L.; Lucacchini, A. J. Med. Chem. 1995, 38, 2196–2201.
7. Fryer, R.; Zhang, P.; Ríos, R.; Zi-Qiang, G.; Basile, A.; Skolnick, P. J. Med. Chem.
1993, 36, 1669–1673.
8. (a) Savini, L.; Massarelli, P.; Nencini, C.; Pellerano, C.; Biggio, G.; Maciocco, A.;
Tuligi, G.; Carrieri, A.; Cinone, N.; Carotti, A. Bioorg. Med. Chem. 1998, 6, 389–
399; (b) Savini, L.; Chiasserini, L.; Pellerano, C.; Biggio, G.; Maciocco, E.; Serra,
M.; Cinone, M.; Carrieri, A.; ltomare, C.; Carotti, A. Bioorg. Med. Chem. 2001, 9,
431–444; (c) Carotti, A.; Altomare, C.; Savini, L.; Chiasserini, L.; Pellerano, C.;
Mascia, M.; Maciocco, E.; Busonero, F.; Mameli, M.; Biggio, G.; Sanna, E. Bioorg.
Med. Chem. 2003, 11, 5259–5272.
9. Gould, R.; Jacobs, W. J. Am. Chem. Soc. 1939, 61, 2890–2895.
10. Milata, V.; Ilasvsky, D.; Chudik, M.; Zalibera, L.; Lesko, J.; Seman, M.; Belicova,
A. Monatsh. Chem. 1995, 126, 1349–1956.
11. Heleyová, K.; Ilavsky´, D.; Bobosík, V.; Prónayová, N. Collect. Czech. Chem.
Commun. 1996, 61, 371–380.
12. Lager, E.; Andersson, P.; Nilsson, J.; Pettersson, I.; Østergaard Nielsen, E.;
Nielsen, M.; Sterner, O.; Liljefors, T. J. Med. Chem. 2006, 49, 2526–2533.
´
13. Vogel, A.; Tatchell, A.; Furnis, B.; Hannaford, A. In Vogels Textbook of Practical
Organic Chemistry, 5th ed.; Longman Group: UK, 1989; p 582.
14. (a) Uniciti-Broceta, A.; Pineda-de-las-Infantas, M.; Diaz-Mochón, J.; Romagnoli,
M.; Baraldi, P.; Gallo, M.; Espinosa, A. J. Org. Chem. 2005, 70, 2878–2880; (b)
Ohmori, J.; Shimizu-Sasamata, M.; Okada, M.; Sakamoto, S. J. Med. Chem. 1997,
40, 2053–2063.
In conclusion, we have prepared pyrazolo[4,3-c]quinolin-3-
ones (6,7) in a multistep protocol from simple anilines. This novel
approach involved a simple and convenient halogenation of quin-
olinone-3-carboxylates (3a,b) with SOCl2 to obtain the key inter-
mediate precursors (4a,b) of the target compounds. With the
present methodology, the regioselectivity achieved in the last
cyclization step when arylhydrazines were used is worth noting.
In this case, N-1 isomers were obtained, whereas in the reaction
with benzylhydrazines, isomers N-1 and N-2 were synthesized.
15. Representative procedure to prepare 7,9-dichloro-2-phenyl-2H-pyrazolo[4,3-
c]quinolin-3(5H)-one (6a): Aniline 1a (3 mmol) and diethyl(ethoxy-
methylene)-malonate (3 mmol) were mixed and heated at 120–130 °C for
5.5 h to give malonate 2a. This compound was treated with diphenylether
(DPE, 10 mL) at 220–230 °C for 4 h to afford quinolone 3a (78% yield). Then, 3a
(0.8 mmol) was mixed with thionyl chloride (0.5 mL) and a drop of DMF at
reflux temperature for 1 h to give chloroquinolines 4a. Thionyl chloride excess
was removed by evaporation and co-evaporation with dichloromethane
(3 ꢀ 10 mL). Pyrazoloquinolinones 6a was obtained by reaction between 4a
(0.8 mmol) and phenylhydrazine 5a (1 mmol) in DMF at 130–140 °C. This
compound was obtained as a yellow solid after a column chromatographic
purification process (71% yield), mp > 310 °C dec. 1H NMR (400.16 MHz,
[(CD3)2SO]), d (ppm): 7.20 (t; J = 7.3 Hz; 1H); 7.46 (t; J = 7.6 Hz and J = 8.2 Hz;
2H); 7.67 (d; J = 1.8 Hz; 1H); 7.75 (d, J = 1.8 Hz; 1H); 8.21 (d; J = 8.3 Hz; 2H);
8.77 (s; 1H); 12.1 (s; 1H). 13C (100.04 MHz, TFA), d (ppm): 107.7; 116.0; 117.6;
118.6; 124.3; 127.3; 128.7; 131.4; 133.5; 138.1; 139.7; 139.8; 141.1; 160.9. MS
(EI): m/z (%) = 330 [M+] (73), 294 (80), 300 (15), 259 (7), 223 (20), 196 (33), 161
(27), 77 (100). HMRS (ESI+): calcd for C16H10N3Cl2O 330.0201; found 330.0204.
See the Supplementary data.
Acknowledgments
Financial support from CONICET and SECyT-UNC is gratefully
acknowledged.
Supplementary data
16. Savini, L.; Massarelli, P.; Corti, P.; Pellerano, C.; Bruni, G.; Romeo, M. R. Il
Farmaco 1993, 48, 1675–1679.
17. Chimichi, S.; Boccalini, M.; Matteucci, A. Tetrahedron 2008, 64, 9275–9279.
18. Ferlin, M.; Chiarelotto, G.; Dall Acqua, S.; Maciocco, E.; Mascia, M.; Pisub, M.;
Biggio, G. Bioorg. Med. Chem. 2005, 13, 3531–3541.
Supplementary data (general procedures, additional experi-
mental descriptions, NMR, HMRS and MS analysis of all products
are presented) associated with this article can be found, in the on-