C O M M U N I C A T I O N S
Scheme 3a
lowing iodination of the terminal alkyne, the alkynyl iodide 23 was
subjected to a sequence involving the following: (1) Cu-mediated
coupling with pyrrolidinone 24 to afford internal alkyne 25; (2) a two-
step conversion of the lactam 25 to the thioimidate 26 via carbonyl
thionation and S-alkylation; (3) [4+2] annulation with vinylcarbodi-
imide 14 to furnish bicyclic pyrimidine 27; and (4) chemoselective
N-deprotection to provide the free 2-aminopyrimidine 28, a substrate
poised for intramolecular alkyne hydroamination.
Transition metal catalyzed hydroamination of alkynes15,16 is a
powerful reaction in synthesis;17-19 however, the paucity of
guanidine or 2-aminopyrimidine nucleophiles engaging in this
reaction is notable. After extensive experimentation, this transfor-
mation was validated by treatment of alkyne 28 (Scheme 4) with
10 mol % AuCl320 at 40 °C, leading to efficient production of the
tricyclic pyrimidine 29 as a single isomer (78%).
Subsequent spiroaminal formation at C8 in enamine 29 was
conducted under carefully controlled acidic conditions, being mindful
of the possibility of undesired C10-N bond rupture via potential
C8-iminium reactivity. This liability was precluded by treatment with
TsOH, effecting TBS removal and spirocyclization to provide the
tetracyclic pyrimidinium 30 (77%).21 The final stages of the synthesis
involved conversion of the allyl ester 30 to its Cs-carboxylate. This
nucleophile, obtained from carboxylic acid 31, was amenable to
selective alkylation with iodide 32.13 The resulting ester 33 was then
subjected to tert-butylcarbamate removal to afford (-)-crambidine (1).
A convergent synthesis of crambidine has been described,
showcasing a [4+2] thioimidate-vinyl carbodiimide annulation and
an intramolecular alkyne-guanidine hydroamination. This strategy
should not only prove useful for preparing other members of the
crambescidins, but also provide an attractive means with which to
access complex N-heterocycles in general.
a Reagents and conditions: (a) 16, t-BuLi, Et2O, hexanes, -78 °C; add
15, -78 f 23 °C, 67%; (b) 14 (2 equiv), (CH2Cl)2, 60 °C, 70%.
Scheme 4a
Acknowledgment. This research was supported by the NIH
(GM57859) and Merck, Inc. We thank Prof. Larry Overman for
providing a copy of a 13C NMR spectrum of synthetic 1.
Supporting Information Available: Experimental details. This
References
(1) Heys, L.; Moore, C. G.; Murphy, P. J. Chem. Soc. ReV. 2000, 29, 57–67.
(2) Jares-Erijman, E. A.; Sakai, R.; Rinehart, K. L. J. Org. Chem. 1991, 56, 5712–
5715.
(3) Ohtani, I.; Kusumi, T.; Kakisawa, H.; Kashman, Y.; Hirsh, S. J. Am. Chem.
Soc. 1992, 114, 8472–8479.
(4) Berlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Bruno, I.; Riccio, R.; Ferri,
S.; Spampinato, S.; Speroni, E. J. Nat. Prod. 1993, 56, 1007–1015.
(5) Jares-Erijman, E. A.; Ingrum, A. L.; Carney, J. R.; Rinehart, K. L.; Sakai, R.
J. Org. Chem. 1993, 58, 4805–4808.
(6) Snider, B. B.; Shi, Z. P. J. Am. Chem. Soc. 1994, 116, 549–557.
(7) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Rabinowitz, M. H.; Renhowe,
P. A. J. Am. Chem. Soc. 2000, 122, 4893–4903.
(8) Nagasawa, K.; Georgieva, A.; Koshino, H.; Nakata, T.; Kita, T.; Hashimoto,
Y. Org. Lett. 2002, 4, 177–180.
(9) Moore, C. G.; Murphy, P. J.; Williams, H. L.; McGown, A. T.; Smith, N. K.
Tetrahedron Lett. 2003, 44, 251–254.
(10) Overman, L. E.; Rhee, Y. H. J. Am. Chem. Soc. 2005, 127, 15652–15658.
(11) Wamhoff, H.; Schmidt, A. Heterocycles 1993, 35, 1055–1066.
(12) Pétry, N.; Parenty, A.; Campagne, J.-M. Tetrahedron: Asymmetry 2004, 15,
1199–1201.
(13) See Supporting Information.
a Reagents and conditions: (a) 21, n-BuLi, THF, -78 f 0 °C; add 20,
-78 f 23 °C, 85%; (b) NIS, AgNO3, Me2CO, 23 °C, 91%; (c) 24, Zn,
DMF, 0 °C; CuCN, LiCl, THF, DMF, -40 f 23 °C; add 23, -40 f 23
°C, 54%; (d) Lawesson’s Rgt, THF, 0 °C, 94%; (e) MeI, K2CO3, THF, 23
°C, 95%; (f) 14 (2 equiv), (CH2Cl)2, 23 °C, 65%; (g) NH4F, MeOH, 23 °C,
79%; (h) AuCl3, MeCN, 40 °C, 78%; (i) p-TsOH·H2O, MeCN, 23 °C,
77%; (j) Pd(PPh3)4, pyrrolidine, MeCN, 23 °C, 81%; (k) Cs2CO3, DMF,
23 °C, 88%; (l) HCl, Et2O, 0 °C, 77%.
(14) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Stappenbeck, F. J. Am. Chem.
Soc. 1999, 121, 6944–6945.
(15) Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104–114.
(16) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. ReV.
2008, 108, 3795–3892.
(17) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485–11489.
(18) Crawley, S. L.; Funk, R. L. Org. Lett. 2006, 8, 3995–3998.
(19) Kadzimirsz, D.; Hildebrandt, D.; Merz, K.; Dyker, G. Chem. Commun. 2006,
661–662.
(20) Fukuda, Y.; Utimoto, K. Synthesis 1991, 975–978.
(21) This and subsequent aminopyrimidine intermediates were purified by RP-HPLC
(water/MeCN/TFA).
tyraldehyde (20) with the phosphonium ylide derived from 4-(tri-
phenylphosphonium)but-1-yne bromide (21) afforded enyne 22. Fol-
JA910831K
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1803