C-N Bond Activation in Ruthenium Carbene Complexes
A R T I C L E S
Scheme 1
further heating, 2 underwent tautomerism to the N-bound species
3 in the presence of excess NHC.6,7
activated complex 1a in the presence of a chloride source
(either bis(triphenylphosphoranylidene)ammonium chloride
([PPN]Cl) or Ru(PPh3)3(CO)HCl) gave a mixture of 2 and 3
and (ii) C-N activation was completely shut down when
Ru(PPh3)3(CO)HCl was reacted with IiPr2Me2 under 1 atm
of H2, conditions under which C-H activation is reversible.
C-N activation has now been observed in a number of both
early (Y, Zr) and late (Rh, Ir, Pd) metal NHC complexes.9
However, these reactions either involve poorly defined metal
complexes generated in situ using imidazolium salt precursors
or take place under highly forcing or heterogeneous conditions.
Such processes do not lend themselves to detailed mechanistic
studies or the thorough characterization of decomposition
products that is so essential (as highlighted by Grubbs3b) if a
proper understanding of decomposition pathways is to be
obtained. In contrast, our ruthenium system provides a well-
defined set of complexes that allow for the first time an
understanding of the C-N activation decomposition reaction.
Herein, we report a combined experimental and computational
mechanistic study of C-N bond activation originating in 1a
that provides insight into (i) how C-N activation takes place,
(ii) the role of C-H activation, and (iii) the importance of N-
and backbone NHC-substituents and metal ancillary ligands. Of
particular note is the finding that C-N activation is intimately
linked to the presence of a hydride ligand, highlighting the fact
that NHC complexes susceptible to C-H activation may be
particularly vulnerable to a subsequent irreversible decomposi-
tion via C-N activation.
C-N activation of NHCs was first described only in 2004
by Cloke, Caddick, and co-workers.8 Exposure of a THF
solution of Ni(cod)2 and excess 1,3-di-tert-butylimidazol-2-
ylidene (ItBu) to sunlight for two weeks yielded a dinuclear
Ni(II) species containing two C-N activated ItBu ligands.
Shorter irradiation times led to the isolation of an intermediate
species containing a C-H activated N-tBu group, which upon
heating with additional ItBu at 70 °C afforded the same final
C-N activated product, along with isobutene. The importance
of C-H activation as a forerunner to C-N activation
suggested by the nickel work was reinforced by our observa-
tions on ruthenium that (i) direct heating of the C-H
(4) (a) Jazzar, R. F. R.; Macgregor, S. A.; Mahon, M. F.; Richards, S. P.;
Whittlesey, M. K. J. Am. Chem. Soc. 2002, 124, 4944. (b) Giunta,
D.; Ho¨lscher, M.; Lehmann, C. W.; Mynott, R.; Wirtz, C.; Leitner,
W. AdV. Synth. Catal. 2003, 345, 1139. (c) Burling, S.; Mahon, M. F.;
Paine, B. M.; Whittlesey, M. K.; Williams, J. M. J. Organometallics
2004, 23, 4537. (d) Abdur-Rashid, K.; Fedorkiw, T.; Lough, A. J.;
Morris, R. H. Organometallics 2004, 23, 86. (e) Cabeza, J. A.; del
R´ıo, I.; Miguel, D.; Sa´nchez-Vega, M. G. Chem. Commun. 2005, 3956.
(f) Galan, B. R.; Gembicky, M.; Dominiak, P. M.; Keister, J. B.; Diver,
S. T. J. Am. Chem. Soc. 2005, 127, 15702. (g) Becker, E.; Stingl, V.;
Dazinger, G.; Puchberger, M.; Mereiter, K.; Kirchner, K. J. Am. Chem.
Soc. 2006, 128, 6572. (h) Hong, S. H.; Chlenov, A.; Day, M. W.;
Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 5148. (i) Burling, S.;
Paine, B. M.; Nama, D.; Brown, V. S.; Mahon, M. F.; Prior, T. J.;
Pregosin, P. S.; Whittlesey, M. K.; Williams, J. M. J. J. Am. Chem.
Soc. 2007, 129, 1987. (j) Galan, B. R.; Pitak, M.; Gembicky, M.;
Keister, J. B.; Diver, S. T. J. Am. Chem. Soc. 2009, 131, 6822. (k)
Burling, S.; Mas-Marza´, E.; Valpuesta, J. E. V.; Mahon, M. F.;
Whittlesey, M. K. Organometallics 2009, 28, 6676. (l) Benhamou,
L.; Wolf, J.; Ce´sar, V.; Labande, A.; Poli, R.; Lugan, N.; Lavigne, G.
Organometallics 2009, 28, 6981. (m) Armstrong, R.; Ecott, C.; Mas-
Marza´, E.; Page, M. J.; Mahon, M. F.; Whittlesey, M. K. Organo-
metallics 2010, 29, 991.
Results and Discussion
Further Experimental Observations on C-N Activation. The
transformation of 1a to 2 involves a number of separate
processes, including not only cleavage of the C-N bond but
also reorientation from a cis- to a trans-phosphine arrangement,
loss of propene, and, ultimately, addition of “HCl”. As shown
in Scheme 1, reaction from Ru(PPh3)3(CO)HCl requires at least
2 equiv of IiPr2Me2, suggesting that the HCl lost upon converting
Ru(PPh3)3(CO)HCl to 1a is trapped as the imidazolium chloride
(5) Burling, S.; Mahon, M. F.; Powell, R. E.; Whittlesey, M. K.; Williams,
J. M. J. J. Am. Chem. Soc. 2006, 128, 13702.
(6) For other tautomerization processes, see: (a) Sundberg, R. J.; Bryan,
R. F.; Taylor, I. F.; Taube, H. J. Am. Chem. Soc. 1974, 96, 381. (b)
Sini, G.; Eisenstein, O.; Crabtree, R. H. Inorg. Chem. 2002, 41, 602.
(c) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G.
J. Am. Chem. Soc. 2006, 128, 2452. (d) Alvarez, E.; Conejero, S.;
Paneque, M.; Petronilho, A.; Poveda, M. L.; Serrano, O.; Carmona,
E. J. Am. Chem. Soc. 2006, 128, 13060. (e) Alvarez, E.; Conejero, S.;
Lara, P.; Lo´pez, J. A.; Paneque, M.; Petronilho, A.; Poveda, M. L.;
del R´ıo, D.; Serrano, O.; Carmona, E. J. Am. Chem. Soc. 2007, 129,
14130. (f) Buil, M. L.; Esteruelas, M. A.; Garce´s, K.; Oliva´n, M.;
On˜ate, E. J. Am. Chem. Soc. 2007, 129, 10998. (g) Ruiz, J.;
Perandones, B. F. J. Am. Chem. Soc. 2007, 129, 9298. (h) Esteruelas,
M. A.; Ferna´ndez-Alvarez, F. J.; On˜ate, E. Organometallics 2008, 27,
6236. (i) Gribble, M. W., Jr.; Ellman, J. A.; Bergman, R. G.
Organometallics 2008, 27, 2152. (j) Song, G.; Su, Y.; Periana, R. A.;
Crabtree, R. H.; Han, K.; Zhang, H.; Li, X. Angew. Chem., Int. Ed.
2010, 49, 912.
(9) (a) Mas-Marza´, E.; Poyatos, M.; Sanau´, M.; Peris, E. Organometallics
2004, 23, 323. (b) Mas-Marza´, E.; Poyatos, M.; Sanau´, M.; Peris, E.
Inorg. Chem. 2004, 43, 2213. (c) Huynh, H. V.; Meier, N.; Pape, T.;
Hahn, F. E. Organometallics 2006, 25, 3012. (d) Yen, S. K.; Koh,
L. L.; Huynh, H. V.; Hor, T. S. A. Dalton Trans. 2007, 3952. (e)
Wang, X.; Chen, H.; Li, X. Organometallics 2007, 26, 4684. (f)
Cabeza, J. A.; del R´ıo, I.; Miguel, D.; Sa´nchez-Vega, M. G. Angew.
Chem., Int. Ed. 2008, 47, 1920. (g) Cooke, C. E.; Jennings, M. C.;
Katz, M. J.; Pomeroy, R. K.; Clyburne, J. A. C. Organometallics 2008,
27, 5777. (h) Han, Y.; Hong, Y.-T.; Huynh, H. V. J. Organomet. Chem.
2008, 693, 3159. (i) Ye, J.; Zhang, X.; Chen, W.; Shimada, S.
Organometallics 2008, 27, 4166. (j) Liu, L.; Wang, F.; Shi, M. Eur.
J. Inorg. Chem. 2009, 1723. (k) Sabiah, S.; Lee, C.-S.; Hwang, W.-
S.; Lin, I. J. B. Organometallics 2010, 29, 290. (l) Hu, Y.-C.; Tsai,
C.-C.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Organometallics 2010,
29, 516.
(7) The factors controlling the relative energies of C-bound 2 and N-bound
3 have been probed using DFT calculations: Ha¨ller, L. J. L.;
Macgregor, S. A. Eur. J. Inorg. Chem. 2009, 2000.
(8) Caddick, S.; Cloke, F. G. N.; Hitchcock, P. B.; de K. Lewis, A. K.
Angew. Chem., Int. Ed. 2004, 43, 5824.
9
J. AM. CHEM. SOC. VOL. 132, NO. 51, 2010 18409