C O M M U N I C A T I O N S
Scheme 2. Search for Mechanistic Insight
In conclusion, we have developed an efficient domino process
for the synthesis of 2,3-disubstituted indoles from alkyne imino-
ethers 1 that employs a silver-catalyzed two-component condensa-
tion followed by a tandem Ag-induced cycloisomerization and 1,3-
alkenyl shift to the Ag-activated carbon. This methodology may
be an ideal protocol for in situ metal-mediated synthesis of olefin
and its regioselective migration to the metal-activated site and can
be useful in constructing 3-alkylated indoles, which are part of the
structures of biologically active compounds and important alkaloids.
The scope of this reaction is currently under investigation in our
laboratories.
Acknowledgment. We thank the National Research Foundation
of Korea (NRF 31200900000001826) for financial support and
BK21 for fellowships.
expected to undergo benzylic C-H insertion to provide the cyclized
product 5b, but in practice, no such product was formed; instead,
1b smoothly underwent sequential cycloisomerization and 1,3-
alkenyl migration to furnish 3b in moderate yield (67%).
The above two experiments revealed that this transformation
would occur via a complicated concerted-metal-associated mech-
anism without forming the real intermediate 2a or Ag-carbene
species such as F.
Next, turning our attention to the synthetic point of view, we
prepared a series of indole derivatives (3c-m) from the corre-
sponding N-arylformimidates (Figure 1). All of the substrates were
transformed into the corresponding indoles 3c-m in good yields.
The substituent at C2 in our products could vary from primary,
secondary, or tertiary alkyl groups to phenyl, naphthyl, or substituted
phenyl groups. These indole derivatives may have biological
importance, since the two derivatives 3k and 3l are known to have
antiproliferative activity on human MDA-MB 231 and MCF-7
breast cancer cells in a microplate assay.9 This methodology may
provide a general entry to the synthesis of various indole derivatives.
Since the present 1,3-alkenyl transfer is a new observation in the
organic chemistry field, we confirmed the structure of a representa-
tive product (3a) by X-ray analysis as well as its full spectral data.10
Supporting Information Available: Full experimental details,
compound characterization data, complete ref 1e, and a CIF file for
3a. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Kam, T.-S.; Choo, Y.-M. HelV. Chim. Acta 2004, 87, 991. (b) Segraves,
N. L.; Crews, P. J. Nat. Prod. 2005, 68, 1484. (c) Kuethe, J. T.; Wong, A.;
Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes, D. L. J. Org. Chem. 2005,
70, 2555. (d) Van Zandt, M. C.; Jones, M. L.; Gunn, D. E.; Geraci, L. S.;
Jones, J. H.; Sawicki, D. R.; Sredy, J.; Jacot, J. L.; DiCioccio, A. T.; Petrova,
T.; Mitschler, A.; Podjarny, A. D. J. Med. Chem. 2005, 48, 3141. (e) Bell,
M. G.; et al. J. Med. Chem. 2007, 50, 6443. (f) Peifer, C.; Selig, R.; Kinkel,
K.; Ott, D.; Totzke, F.; Schachtele, C.; Heidenreich, R.; Rocken, M.;
Schollmeyer, D.; Laufer, S. J. Med. Chem. 2008, 51, 3814. (g) Kerber,
V. A.; Passos, C. S.; Verli, H.; Fett-Neto, A. G.; Quirion, J. P.; Henriques,
A. T. J. Nat. Prod. 2008, 71, 697.
(2) (a) Cacchi, S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873. (b) Ackermann,
L. Org. Lett. 2005, 7, 439. (c) McLaughlin, M.; Palucki, M.; Davies, I. W.
Org. Lett. 2006, 8, 3307. (d) Burton, R. R.; Tam, W. Org. Lett. 2007, 9,
3287. (e) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver,
T. G. J. Am. Chem. Soc. 2007, 129, 7500. (f) Trost, B. M.; McClory, A.
Angew. Chem. 2007, 119, 2120. (g) Barluenga, J.; Jime´nez-Aquino, A.;
Valde´s, C.; Aznar, F. Angew. Chem. 2007, 119, 1551. (h) Ohta, Y.; Chiba,
H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 3535. (i) Fang, Y. Q.;
Lautens, M. J. Org. Chem. 2008, 73, 538. (j) Shi, Z.; Zhang, C.; Li, S.;
Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem. 2009, 121, 4642.
(3) (a) Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122,
5662. (b) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412. (c)
Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592.
(d) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006,
8, 289.
(4) (a) Yao, X.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 6884. (b) Nguyen,
R. V.; Yao, X. Q.; Bohle, D. S.; Li, C. J. Org. Lett. 2005, 7, 673.
(5) Arcadi, A.; Alfonsi, M.; Bianchi, G.; Anniballe, G. D.; Marinelli, F. AdV.
Synth. Catal. 2006, 348, 331.
(6) (a) Cacchi, S.; Fabrizi, G.; Pace, P. J. Org. Chem. 1998, 63, 1001. (b)
Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 11940. (c) Kamijo,
S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 3230. (d) Kamijo, S.;
Yamamoto, Y. J. Org. Chem. 2003, 68, 4764. (e) Cacchi, S.; Fabrizi, G.;
Parisi, L. M. Synthesis 2004, 1889. (f) Grimster, N. P.; Gauntlett, C.;
Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem. 2005, 117, 3185.
(7) (a) Smith, J. J. K.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 4526. (b) Staben, S. T.; Smith, J. J. K.; Toste, F. D. Angew. Chem.,
Int. Ed. 2004, 43, 5350.
(8) (a) Nakamura, I.; Mizushima, Y.; Yamagishi, U.; Yamamoto, Y. Tetra-
hedron 2007, 63, 8670. (b) Nakamura, I.; Sato, Y.; Konta, S.; Terada, M.
Tetrahedron Lett. 2009, 50, 2075. (c) Nakamura, I.; Sato, Y.; Terada, M.
J. Am. Chem. Soc. 2009, 131, 4198.
(9) Pojarova´, M.; Kaufmann, D.; Gastpar, R.; Nishino, T.; Reszka, P.;
Bednarski, P. J.; von Angerer, E. Bioorg. Med. Chem. 2007, 15, 7368.
(10) The X-ray data for 3a have been deposited at the Cambridge Crystal-
lographic Data Centre and allocated the deposition number CCDC 757660.
Figure 1. 2,3-Substituted indoles from this study.
JA9106226
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1793