A R T I C L E S
Chae et al.
Figure 1. Chemical structures of widely used detergents for membrane protein studies.
(LDAO),11 Triton X-100,12 and CHAPS13 (Figure 1). A
detergent that is effective for extraction of an intrinsic protein
from its membrane frequently turns out not to be ideal for
subsequent characterization; in these cases, a detergent exchange
procedure is employed after the initial isolation.14 Thus, for
example, Triton X-100 is often effective for disruption of a
biological membrane and concomitant “capture” of embedded
proteins in a native-like state, but this detergent has generally
not been amenable to crystallization.15 Therefore, a sample
solubilized with Triton X-100 can have the detergent component
exchanged for more crystallization-prone examples such as
DDM, OG, or LDAO, which may not have been capable of
extracting the protein from its native membrane.16
few efforts of this type have been reported.17 Such research
efforts can be difficult to pursue because they require both
expertise in the synthesis and characterization of organic
molecules and expertise in the biochemistry of membrane
proteins, skill sets that generally do not overlap.
Our interest in the design of new amphiphiles for solubiliza-
tion and ultimately crystallization of membrane proteins has
focused on a simple strategy for modulating conformational
mobility.18 The conventional detergents most commonly em-
ployed in successful membrane protein crystallization efforts,
DDM, OG, and LDAO, all contain linear alkyl groups, which
are highly flexible.15 Because membrane protein crystallization
remains notoriously difficult, even when these detergents are
used, we wondered whether the inherent flexibility of linear alkyl
groups works against formation of a crystalline lattice.18 The
rarity of membrane protein crystals grown in the presence of
CHAPS or other rigid amphiphiles suggests that some degree
of flexibility may be important in the amphiphile structure.
Therefore, we have designed, synthesized, and evaluated new
amphiphiles that contain at least one branchpoint.18 This feature,
a carbon atom bearing three or four non-hydrogen bonding
partners, limits conformational mobility about nearby single
Most biochemical detergents share a simple architecture: a
polar “headgroup” is placed at one end of a long alkyl “tail”
(as illustrated by DDM, OG, and LDAO). A few common
examples, such as Triton X-100 and CHAPS, deviate from this
structural pattern, and the widespread use of these atypical
detergents suggests that it might be fruitful to explore a broader
range of variations in amphiphilic architecture. To date, only a
(9) (a) Van Aken, T.; Foxall-Van Alken, S.; Castleman, S.; Ferguson-
Miller, S. Methods Enzymol. 1986, 125, 27–35. (b) Lund, S.; Orlowski,
S.; de Foresta, B.; Champeil, P.; le Maire, M.; Moller, J. V. J. Biol.
Chem. 1989, 264, 4907–4915.
(17) (a) Schafmeister, C. E.; Meircke, L. J. W.; Stroud, R. M. Science 1993,
262, 734–738. (b) Tribet, C.; Audebert, R.; Popot, J.-L. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 15047–15050. (c) McGregor, C.-L.; Chen,
L. N.; Pomroy, C.; Hwang, P.; Go, S.; Chakrabartty, A.; Prive´, G. G.
Nat. Biotechnol. 2003, 21, 171–176. (d) Zhang, Q.; Ma, X.; Ward,
A.; Hong, W.-X.; Jaakola, V.-P.; Stevens, R. C.; Fin, M. G.; Chang,
G. Angew. Chem., Int. Ed. 2007, 119, 7153–7155. (e) Barklis, E.;
McDermott, J.; Wilkens, S.; Schabtach, E.; Schmid, M.; Fuller, S.;
Karanjia, S.; Love, Z.; Jones, R.; Zhao, X.; Rui, Y.; Thompson, D. H.
EMBO J. 1997, 16, 1199–1213. (f) Barklis, E.; McDermott, J.;
Wilkens, S.; Fuller, S.; Thompson, D. H. J. Biol. Chem. 1998, 273,
7177–7180. (g) Zhou, M.; Haldar, S.; Franses, J.; Kim, J.-M.;
Thompson, D. H. Supramol. Chem. 2005, 17, 101–111. (h) Thompson,
D. H.; Zhou, M.; Grey, J.; Kim, H.-k. Chem. Lett. 2007, 36, 956–
975.
(10) (a) Alexandrov, A.; Mileni, M.; Chien, E. Y.; Hanson, M. A.; Stevens,
R. C. Structure 2008, 16, 351–359. (b) Musatov, A.; Ortega-Lopez,
J.; Robinson, N. C. Biochemistry 2000, 39, 12996–13004.
(11) (a) Deisenhofer, J.; Epp, O.; Miki, R. H.; Huber, R.; Michel, H. Nature
1985, 318, 618–624. (b) Zhou, M.; Morais-Cabral, J. H.; Mann, S.;
MacKinnon, R. Nature 2001, 411, 657–661. (c) Shultis, D. D.; Purdy,
M. D.; Banchs, C. N.; Wiener, M. C. Science 2006, 312, 1396–1399.
(12) (a) Edwards, K.; Almgren, M.; Bellare, J.; Brown, W. Langmuir 1989,
5, 473–478. (b) Vuillard, L.; Braun-Breton, C.; Rabilloud, T. Biochem.
J. 1995, 305, 337–343.
(13) (a) Hjelmeland, L. M. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 6368–
6370. (b) Hjelmeland, L. M.; Nebert, D. W.; Osborne, J. C. Anal.
Biochem. 1983, 130, 72–82.
(14) (a) Zhang, H.; Cramer, W. A. J. Struct. Funct. Genomics 2005, 6,
219–223. (b) Innokentiy, M.; Georgia, K.; Casey, J.; Roland, R.;
Senyon, C.; Witek, K. BMC Struct. Biol. 2007, 7, 74–85.
(16) Ruf, A.; Mu¨ller, F.; D’Arcy, B.; Stihle, M.; Kusznir, E.; Handschin,
C.; Morand, O. H.; Thoma, R. Biochim. Biophy. Res. Commun. 2004,
315, 247–254.
(18) (a) McQuade, D. T.; Quinn, M. A.; Yu, S. M.; Polans, A. S.; Krebs,
M. P.; Gellman, S. H. Angew. Chem., Int. Ed. 2000, 39, 758–761. (b)
Yu, S. M.; McQuade, D. T.; Quinn, M. A.; Hackenberger, C. P. R.;
Krebs, M. P.; Polans, A. S.; Gellman, S. H. Protein Sci. 2000, 9, 2518–
2527. (c) Chae, P. S.; Wander, M. J.; Bowling, A. P.; Laible, P. D.;
Gellman, S. H. ChemBioChem 2008, 9, 1706–1709.
9
1954 J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010