10.1002/anie.201814362
Angewandte Chemie International Edition
2001, 371. (c) J. Clayden, Chem. Commun. 2004, 127. (d) J. Clayden, L. W.
Lai, M. Helliwell, Tetrahedron 2004, 60, 4399.
Calculations were performed at the DLPNO-CCSD(T)/def2-
TZPD//M062X/6-31G(d) level, with SMD solvation for toluene and
CH2Cl2. The increase in activation barrier, DDG‡, from O-alkylation
of 24 is 39.7 kJ mol-1, which compares favourably with experiment
(36.0 kJ mol-1).[25] An intramolecular OH—O H-bond (1.85Å) is
present in the ground state structure of napthamide 24. Rotation about
the exocyclic C-C bond results in a transition structure with a non-
planar amide. In this structure, the pyramidalized nitrogen atom is in
very close contact with the hydroxyl proton (1.66 Å). In the absence
of a free naphthol, rotation proceeds via a transition structure in which
the non-planar amide cannot be similarly stabilized. Amide
pyramidalization (a consequence of steric demands) enhances the
nitrogen atom’s hydrogen-bond basicity, leading to a stronger
hydrogen bond in the transition structure than in the ground state, and
contributes to a pronounced reduction in barrier height.
[7]
966.
[8]
6593.
[9]
J. Clayden, A. Lund, L. Vallverdffl, M. Helliwell, Nature 2004, 431,
T. Suda, K. Noguchi, M. Hirano, K. Tanaka, Chem. Eur. J. 2008, 14,
(a) V. Chan, J. G. Kim, C. Jimeno, P. J. Caroll, P. J. Walsh, Org. Lett.
2004, 6, 2051. (b) S. Brandes, M. Bella, A. Kjaersgaard, K. A. Jørgensen,
Angew Chem. Int. Ed. 2006, 45, 1147. (c) S. Brandes, B. Niess, M. Bella, A.
Prieto, J. Overgaard, K. A. Jørgensen, Chem. Eur. J. 2006, 12, 6039.
[10] K. T. Barrett, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 2963.
[11] V. C. Fäseke, C. Sparr, Angew. Chem. Int. Ed. 2016, 55, 7261.
[12] M. Oki, Top. Stereochem. 1983, 14, 1
[13] (a) W.-M. Dai, Y. Zhang, Y. Zhang, Tetrahdron: Asymm. 2004, 15,
525. (b) C. Roussel, N. Vanthuyne, M. Bouchekara, A. Djafri, J. Eleguero, I.
Alkorta, J. Org. Chem. 2008, 73, 403.
[14] For examples of a related phenomenon see: (a) B. E. Dial, P. J.
Pellechia, M. D. Smith, K. D. Shimizu, J. Am. Chem. Soc. 2012, 134, 3675.
(b) Y. Iwasaki, R. Morisawa, S. Yokojima, H. Hasegawa, C. Roussel, N.
Vanthuyne, E. Caytan, O. Kitagawa, Chem. Eur. J. 2018, 24, 4453.
[15] For enantioselective counterion mediated O-functionalization see: J. D.
Jolliffe, R. J. Armstrong, M. D. Smith, Nature Chem. 2017, 9, 558.
[16] For a proposed mechanism for enantioselective O-functionalization
relevant to this study see: H. Li, W. Fan, X. Hong, Org. Biomol. Chem. 2018,
DOI: 10.1039/C8OB02173B.
[17] D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010, 327, 315.
[18] For other organic reactions mediated by metal-containing
photocatalysts via energy transfer see: (a) E. P. Farney, T. P .Yoon, Angew.
Chem. Int. Ed. 2014, 53, 793. (b) S. O. Scholz, E. P. Farney, S. Kim, D. M.
Bates, T. P. Yoon, Angew. Chem. Int. Ed. 2016, 55, 2239. (c) K. Singh, S. J.
Staig, J. D. Weaver, J. Am. Chem. Soc. 2014, 136, 5275. (d) E. R. Welin, C.
C. Le, D. M. Arias-Rotondo, J. K. McCusker, D. W. C. MacMillan, Science
2017, 355, 380. (e) M. J. James, J. L. Schwarz, F. Strieth-Kalthoff, B.
Wibbeling, F. Glorius, J. Am. Chem. Soc. 2018, 140, 8624. (f) F. Streith-
Kalthoff, M. J. James, M. Teders, L. Pitzer, F. Glorius, Chem. Soc. Rev. 2018,
47, 7190.
In conclusion we have developed a highly enantioselective route to
axially chiral napthamides. This approach relies on a transition-state
hydrogen bond to mediate substrate racemization that enables a
dynamic kinetic resolution via O-alkylation. These molecules may
find application in supramolecular chemistry, catalysis and medicinal
chemistry programmes.
Acknowledgements
We are grateful for support from EPSRC (EP/R005826/1, to AM), the
EPSRC Centre for Doctoral Training in Synthesis for Biology and
Medicine (EP/L015838/1, for a studentship to AF), the People
Programme (Marie Curie Actions) of the European Union's Seventh
Framework Programme for funding (FP7/2007–2013, REA grant
agreement no. 316955, to AL) and the Agency for Science,
Technology and Research (A*STAR) Singapore for a National
Science Scholarship (to JSJT).
[19] (a) J. B. Metternich, R. Gilmour, Synlett 2016, 27, 2541. (b) K. Zhan,
Y. Li, Catalysts 2017, 7, 337.
[20] For full details of optimization please see supporting information
[21] J. Clayden, C. McCarthy, M. Helliwell, Chem. Commun. 1999, 2059.
[22] Changing the amide substituent to N, N-diethyl or N, N-diphenyl led to
significantly lower enantioselectivity.
[23] D. Lotter, A. Castrogiovanni, M. Neuburger, C. Sparr, ACS Cent. Sci.
2018, 4, 656.
[24] (a) M. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717. (b) C.
Zarate, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2017, 139, 1191.
[25] We also examined related naphthol substrates bearing 8-methoxy and
8-trifluoromethyl substituents. Similar results were obtained, with even larger
Conflict of Interest
The authors declare no conflict of interest.
differences in DDG‡ predicted (51.5 and 44.1 kJ mol-1, respectively). See SI
for full details.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: visible light • energy transfer • isomerization • counterion •
phase transfer • catalyst • axial chirality
[1]
[2]
G. H. Christie, J. Kenner, J. Chem. Soc., Trans. 1922, 121, 614.
(a) E. Kumarasamy, R. Ragunathan, M. P. Sibi, J. Sivaguru, Chem. Rev.
2015, 115, 11239. (b) B. Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018,
8, 2981.
[3]
(a) J. Clayden, W. A. Moran, P. J. Edwards, S. R. LaPlante, Angew.
Chem. Int. Ed. 2009, 48, 6398. (b) S. R. LaPlante, L. D. Fader, H. R. Fandrick,
D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J. Med.
Chem. 2011, 54, 7005. (c) S. R. LaPlante, P. J. Edwards, L. D. Fader, A.
Jakalian, O. Hucke, ChemMedChem 2011, 6, 505.
[4]
(a) J. Clayden, P. Johnson, J. H. Pink, M. Helliwell, J. Org. Chem. 2000,
65, 7033. (b) X. F. Bai, T. Song, Z. Xu, C. G. Xia, W.S. Huang, L. W. Xu,
Angew. Chem. Int. Ed. 2015, 54, 5255.
[5]
N. Westlund, S. A. Yasin, Tetrahedron 1998, 54, 13277.
[6] S. Thayumanavan, P. Beak, D. P. Curran, Tetrahedron Lett. 1996, 37,
2899. (b) J. Clayden, P. Johnson, J. H. Pink, J. Chem Soc., Perkin Trans. 1
A. Ahmed, R. A. Bragg, J. Clayden, L. W. Lal, C. McCarthy, J. H. Pink,
4
This article is protected by copyright. All rights reserved.