4
Tetrahedron
20
21
(CH3)2CH
PhCH2
(CH3)2CH
PhCH2
Ph
18
12
63
76
Ph
22d
H
H
Ph
18
68
23
24
H2N(CH2)2
Ph(CH2)2
H
H
CH3(CH2)3
Ph
16
12
80
72
aReaction conditions: amine (1.0 equiv), nitrile (1.0 equiv) and sulfated tungstate (20 wt% ) at 120 °C,in DMF as solvent. bIsolated yield. dAmmonia is used as
1
ammonium acetate. cAll products are known and were identified by their melting point, IR and HNMR spectra, according to the literature.
Galka, C. H.; Gade, L. H. Monatshefte fur Chemie, 2005, 136,
Acknowledgments
1693; d) Xu, Sun, J. ; Q. Shen, Tetrahedron Lett. 2002, 43, 1867;
e) Wang, J.; Xu, F.; Cai, T.; Shen, Q. Org. Lett. 2008, 10, 445.
12. a) Roger, R.; Neilson, D. G. Chem. Rev. 1961, 61, 179; b)
Rousselet, G.; Capdevielle, P.; Maumy, M. Tetrahedron Lett.
1993, 34, 6395; c) Forsberg, J. H.; Spaziano, V. T.;
Balasubramanian, T. M.; Liu, G. K.; Kinsley, S. A.; Duckworth,
C. A.; Poteruca, J. J.; Brown, P. S.; Miller, J. L. J. Org. Chem.
1987, 52, 1017.
The author (SDV) is grateful to the University Grant
Commission (UGC), India and Centre for Green Technology,
University of Mumbai for financial assistance.
References and notes
13. a) Chaudhari, P. S.; Salim, S. D.; Sawant, R. V.; Akamanchi, K.
G. Green Chem. 2010, 12, 1707; b) Salim, S.D.; Pathare, S.P.;
Akamanchi, K. G. Catal. Comm. 2011, 12, 78; c) Pathare, S. P.;
Akamanchi, K. G. Tetrahedron Lett. 2012, 20, 871; d) Pathare, S.
P. Chaudhari, S. P.; Akamanchi, K. G. Appl. Cata. A: Gen. 2012,
125, 425; e) Pathare, S. P. Sawant, R. V.; Akamanchi, K. G.
Tetrahedron Lett. 2012, 53, 3259; f) Pathare, S. P.; Jain, A. H.;
Akamanchi, K. G. RSC Advances. 2013, 3, 7697; g) Pathare, S. P.;
Akamanchi, K. G. Appl. Catal. A: Gen. 2013, 452, 29.
14. a) Shilcrat, S. C.; Mokhallalati, M. K.; Fortunak, J. M. D.;
Pridgen, L. N. J. Org. Chem. 1997, 62, 8449; b) Asproni, B.;
Talani, G.; Busonero, F.; Pau, A.; Sanna, S.; Cerri, R.; Mascia, M.
P.; Sanna, E.; Biggio, G. J. Med. Chem. 2005, 48, 2638.
15. Abdelaal, S. M.; Baue, L.; J. hetrocyclic, chem.1968, 25, 1849.
16. Sulfated tugstate was prepared as per the reported procedure.13a
General:1H NMR (300 MHz)of all the products were recorded at
300MHz in CDCl3 as solvent and chemical shift values are
expressed in δ units relative to tetramethylsilane (Me4Si) signal as
internal reference in CDCl3. IR spectra were recorded as KBr
pellet. Purity of all compounds was established using the common
HPLC conditions: isocratic elution: (0.05% CF3COOH,
Water/CH3CN 50:50), flow rate = 1.0 mL/min, T = 25 °C, UV
detection at 254 nm with column Purosphere, RP-18e (5μm).
All the solvents were purchased from commercial sources and
were used without further purification.
1.
2.
Brasche, G.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47,
1932.
a) Greenhill, J. V.; Lue, P. Prog. Med. Chem. 1993, 30, 203; b)
Xu, Z. Y.; Yan, W.; Liu, Y. F.; Zhejiang Chem. Ind. 1988, 19, 1;
c) McFarland, J. W.; Howes, Jr. H. L. J. Med. Chem. 1972,15,
365; d) Faust, J. A.; Mori, A.; Sahyun, M. J. Am. Chem.
Soc.1959,81, 2214.
3.
4.
Negwer, M. Organic-chemical Drugs and Their Synonyms,
Akademie Verlag: Berlin, Vol. II; 1994, 1743-1775.
a) Pan, K.; Scott, M. K.; Lee, D. H. S.; Fitzpatrick, L. J.; Crooke,
J. J.; Rivero, R. A.; Rosenthal, D. I. ; Vaidya, A. H.; Zhao, B.;
Reitz, A. B. Bio. Med. Chem. 2003, 11, 185; b) Shilcrat, S. C.;
Mokhallalati, M. K.; Fortunak, J. M. D.; Pridgen, L. N. J. Org.
Chem. 1997,62, 8449; c) Gug, F.; Bach, S.; Blondel, M.; Vierfond,
J.; Martina, A.; Galons, H. Tetrahedron. 2004, 60, 4705; d) Ticep,
C. M.; Bryman, L. M. Tetrahedron. 2001, 57, 2689; e) McCauley,
J. A.; Theberge, C. R.; Liverton, N. J. Org. Lett. 2000, 2, 3389; f)
Szczepankiewicz, B. C.; Rohde, J. J.; Kurukulasuriya, R. Org.
Lett. 2005, 7, 1833; g) Girreser, U.; Heber, D. Synthesis. 1999, 9,
1637; h) Pratap, R.; Kumar, B.; Ram, V. J. Tetrahedron. 2007, 63,
10309; i) Shie, J. J.; Fang, J. M. J. Org. Chem. 2007 ,72, 3141; j)
Zienkiewicz, J.; Kaszynski, P.; Young, V. G. J. Org. Chem. 2004,
69, 2551; k) Sambaiah, T.; Reddy, K. K. Synthesis. 1990, 5, 422;
l) W. H. Graham, J. Am. Chem. Soc. 1965, 87, 4396.
Chan, S. L. F.; Pallett, A. L.; Clews, J.; Ramsden, C. A.; Morgan,
N. G. Eur. J. Pharmacol. 1997, 323, 241.
Wu, H.; Xue, F.; Xiao, X.; Qinuchs, Y. J. Am. Chem. Soc. 2010,
132, 14052.
Mariappan, A.; David, W. B.; Stephens, C. E. Tetrahedron Lett.
2002, 43, 9089.
Zhang, W. X.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2005, 127,
16788.
a) Grivas, J. C.; Taurins, A. Can. J. Chem. 1961, 39, 761; b) P.
Oxiey,M. W. Partridge, W. F.Short, J. Chem. Soc. 1947, 1110; c)
Garigipati, R. S. Tetrahedron Lett. 1990, 31, 1969; d) Fersberg, J.
H.; Spaziano, V. T.; Balasubramanian, T. M. J. Org. Chem. 1987,
52, 1017; e) Xu, F.; Sun, J.; Shen, Q. Tetrahedron Lett. 2002, 43,
1867.
Procedure for sulfated tungstate mediated synthesis of N-
benzylbenzamidine (Table 2 entry 1)
5.
6.
7.
8.
9.
Sulfated tungstate (0.2 g, 20 wt%) was added to a mixture of
benzylamine (1 g, 9.34 mmol) and benzonitrile (0.96 g, 9.34
mmol) in DMF(10 ml) and stirred at 120 °C for 12 h. Progress of
the reaction was monitored by TLC. After completion of the
reaction, the reaction mixture was cooled to rt and filtered, washed
with ethyl acetate to recover the catalyst. Combined filtrate and
washings were concentrated under reduced pressure and the
residue obtained was chromatographed (silica gel #60-120; eluent:
hexane-ethyl acetate = 40 : 60) to get pure N-benzylbenzamidine
as white solid.;Yield:1.77 g 90%, white solid, mp 75-77 °C (lit17
77-78 °C). IR (KBr) 3287, 3035, 2868, 1662, 1534, 1385, 1241,
1
725, 699 cm-1. H NMR (300 MHz; CDCl3; Me4Si) δ= 7.31-7.22
(m, 10 H), 5.89 (s, 1 H), 4.50 (d, J=8.4Hz, 2H), 1.80 (s, 1 H).
HPLC retention time: 2.33 min.
10. Grivas, J. C.; Taurins, A. Can. J. Chem. 1961, 39, 761.
11. a) Bower, J. D.; Ramage, G. R. J. Chem. Soc. 1957, 4506; b)
Gielen, H.; Alonso-Alija, C.; Hendrix, M.; Niewohner, U.;
Schauss, D.; Tetrahedron Lett. 2002, 43, 419; c) Meder, M.;
17. Cooper, C.; Partridge, M. W. J. Chem. Soc. 1953, 255.