C O M M U N I C A T I O N S
Table 2. Scope of the Enantioselective Enyne Bromolactonizationa
The relative stereochemistry of the products and the absolute
stereochemistry of the bromoallenes were assigned based on our
previous study7 and Lowe’s rule for allenes respectively.14 The
X-ray structure of lactone 2n further confirmed our assignment.15
In summary, we have developed a bifunctional catalyst promoted
highly enantioselective bromolactonization of (Z)-enynes.16 We
anticipate that further investigation of this class of bifunctional
catalysts would lead to novel entries for other halogen promoted
enantioselective reactions.
Acknowledgment. I.A.G. performed X-ray crystallography. We
thank the University of Wisconsin and the donors of the Petroleum
Research Fund (48092-G1) for funding.
Supporting Information Available: Experimental procedures and
characterization data for the new compounds. This material is available
References
(1) (a) Harding, K. E.; Tiner, T. H. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 363. (b)
Rodriguez, J.; Dulcere, J. P. Synthesis 1993, 1177. (c) Denmark, S. E.;
Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc. 2010, 132, 1232.
(2) Kang, S. H.; Lee, S. B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748.
(3) Kwon, H. Y.; Park, C. M.; Lee, S. B.; Youn, J. H.; Kang, S. H. Chem.sEur.
J. 2008, 14, 1023.
(4) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
(5) For selected reviews on halolactonization, see: (a) Dowle, M. D.; Davies,
D. I. Chem. Soc. ReV. 1979, 8, 171. (b) Ranganathan, S.; Muraleedharan,
K. M.; Vaish, N. K.; Jayaraman, N. Tetrahedron 2004, 60, 5273.
(6) (a) Grossman, R. B.; Trupp, R. J. Can. J. Chem. 1998, 76, 1233. (b) Cui,
X. L.; Brown, R. S. J. Org. Chem. 2000, 65, 5653. (c) Haas, J.; Piguel, S.;
Wirth, T. Org. Lett. 2002, 4, 297. (d) Wang, M.; Gao, L. X.; Mai, W. P.;
Xia, A. X.; Wang, F.; Zhang, S. B. J. Org. Chem. 2004, 69, 2874. (e)
Wang, M.; Gao, L. X.; Yue, W.; Mai, W. P. Synth. Commun. 2004, 34,
1023. (f) Haas, J.; Bissmire, S.; Wirth, T. Chem.sEur. J. 2005, 11, 5777.
(g) Garnier, J. M.; Robin, S.; Rousseau, G. Eur. J. Org. Chem. 2007, 3281.
(h) Ning, Z. L.; Jin, R. H.; Ding, J. Y.; Gao, L. X. Synlett 2009, 2291. (i)
During the revision of this manuscript, Borhan’s group reported an elegant
catalytic asymmetric chlorolactonization of 4-aryl-pent-4-enoic acids with
up to 90% ee. Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B.
J. Am. Chem. Soc. DOI: 10.1021/ja100502f.
a Conditions: To a solution of 1 and 5d (20 mol %) in ClCH2CH2Cl
was added NBS (1.2 equiv), and the solution was stirred at rt for
0.5-10 h. b The yield of 79% is based on recovered starting material.
(entries 1-7, Table 2). The observed dr’s were >20:1 for almost
all substrates except 1e with a dr ≈ 10:1.7 Nitrogen and carbon
linkers could also be tolerated (entries 8 and 9). The reaction time
became longer for substrates with electron-withdrawing groups on
the terminal position (entries 6, 7, and 9). Trisubstituted olefin (Z)-
1k yielded tetrasubstituted allene 2k in 81% ee (entry 10), while
the corresponding (E)-1k yielded racemic products.
Cyclization of substrate 1l under optimized conditions provided
lactone 2l in high enantioselectivity albeit in lower conversion (entry
11). Surprisingly, mainly 1,2-addition products were observed for
methoxy substituted substrate 1m. On the other hand, various
electron-withdrawing groups improved the conversion and still
retained the high enantioselectivity, with ee’s ranging from 94%
to 99% (entries 13-19).
In some previous cases (e.g., entries 6, 7, and 9), the reaction
required a much longer time for completion using DABCO
compared to urea 5d as the catalyst. However, no reaction occurred
for substrate 1n using 20 mol % of either DABCO or simple urea
BnNHC(O)NHTs alone. Addition of both DABCO (20 mol %) and
urea BnNHC(O)NHTs (20 mol %) provided 12% of lactone (()-
2n, and 82% of acid 1n were recovered after 12 h. Other substrates
also gave the corresponding racemic products in similar yields under
the above conditions (e.g., 12% of (()-2o, 20% of (()-2r, and 9%
of (()-2t). These results suggest that both quinuclidine and urea
groups of catalyst 5d are critical for activity in these cases. Although
the detailed mechanism has not been clarified, we propose that
catalyst 5d may serve as a bifunctional catalyst12 to activate the
system via deprotonation of the carboxylic acid and formation of
hydrogen bonds with NBS.
(7) Zhang, W.; Xu, H. D.; Xu, H.; Tang, W. P. J. Am. Chem. Soc. 2009, 131,
3832.
(8) See ref 7 and references cited therein.
(9) For selected reviews on cinchona alkaloids in catalysis, see: (a) Kacprzak,
K.; Gawronski, J. Synthesis 2001, 961. (b) Tian, S. K.; Chen, Y. G.; Hang,
J. F.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621. (c)
Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed.
2006, 45, 7496. (d) Connon, S. J. Chem. Commun. 2008, 2499.
(10) Low ee’s were observed for the corresponding trans-1a using either catalyst
3a or 5d under optimized conditions.
(11) For selected reviews on hydrogen bonds in catalysis, see: (a) Schreiner,
P. R. Chem. Soc. ReV. 2003, 32, 289. (b) Takemoto, Y. Org. Biomol. Chem.
2005, 3, 4299. (c) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV. Synth. Cat. 2006,
348, 999. (d) Doyle, A. G.; Jacobsen, E. N. Chem. ReV. 2007, 107, 5713.
(e) Akiyama, T. Chem. ReV. 2007, 107, 5744. (f) Yu, X. H.; Wang, W.
Chem. Asian J. 2008, 3, 516. (g) Zhang, Z. G.; Schreiner, P. R. Chem.
Soc. ReV. 2009, 38, 1187. (h) Connon, S. J. Synlett 2009, 354.
(12) For pioneering work on cinchona-derived (thio)urea 5 as bifunctional
catalysts, see: (a) Li, B. J.; Jiang, L.; Liu, M.; Chen, Y. C.; Ding, L. S.;
Wu, Y. Synlett 2005, 603. (b) Vakulya, B.; Varga, S.; Csampai, A.; Soos,
T. Org. Lett. 2005, 7, 1967. (c) McCooey, S. H.; Connon, S. J. Angew.
Chem., Int. Ed. 2005, 44, 6367. (d) Ye, J. X.; Dixon, D. J.; Hynes, P. S.
Chem. Commun. 2005, 4481. For more selected applications, see: (e) Song,
J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (f) Wang, J.;
Li, H.; Zu, L. S.; Jiang, W.; Xie, H. X.; Duan, W. H.; Wang, W. J. Am.
Chem. Soc. 2006, 128, 12652. (g) Lubkoll, J.; Wennemers, H. Angew.
Chem., Int. Ed. 2007, 46, 6841. (h) Li, D. R.; Murugan, A.; Falck, J. R.
J. Am. Chem. Soc. 2008, 130, 46. (i) Nodes, W. J.; Nutt, D. R.; Chippindale,
A. M.; Cobb, A. J. A. J. Am. Chem. Soc. 2009, 131, 16016.
(13) Zhang, Y.; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126,
15038.
(14) Lowe, G. J. Chem. Soc., Chem. Commun. 1965, 411.
(15) See Supporting Information for details.
(16) Bromolactonization of simple olefins catalyzed by 5d yielded nearly racemic
products in a preliminary study described in the Supporting Information.
JA100173W
9
J. AM. CHEM. SOC. VOL. 132, NO. 11, 2010 3665