contributions from the central fragment in addition to the orbitals
of the “belt” fragment.
restores initial emission properties that can be considered as a
“turn-on-turn-off” tool. Protonation of the 3-NH2 substituted
complex 3 demonstrated much smaller blue-shift of emission
wavelength (ca. 30 nm) and ca. 40% drop in quantum yield. The
computational studies performed proved the energetic feasibility
of the complete protonation of the clusters 1–3 and revealed
the structural trends accompanying this process. Analysis of the
frontier orbital characteristics of the complexes 1–6 suggested a
tentative explanation of the photophysical changes observed.
Protonation has significant effects on the frontier orbital char-
acteristics of the clusters, as the protonated NMe2 and NH2 groups
contribute much less electron density to the central fragment.
Because of the significantly reduced substituent effects, the orbitals
of the central fragment centered on the heterometallic core and
the alkynyl groups are shifted down in energy and the composition
of the HOMOs is fairly similar for clusters 4–6. Analogously,
for clusters 4–6, the LUMO is centered primarily on the alkynyl
groups of the central fragment, and the LUMO+1 is centered on
the “belt” fragment. The lowest energy triplet states consistently
possess the same central fragment based characteristics, with
LSOMO related to HOMO and HSOMO related to LUMO.
One of the interesting photophysical aspects of the studied
clusters is the greatly improved quantum yield of clusters 1 and 2
upon complete protonation. In the protonated clusters 4 and 5, the
frontier orbital characteristics suggest the triplet emission occurs
within the core of the central fragment, in which case spin–orbit
coupling due to metal orbitals would enable efficient radiative
decay of the excited triplet state. On the contrary, in the case of
the non-protonated complexes 1 and 2, the excited triplet state
strongly involves the p* orbitals of the “belt” fragment, hindering
efficient spin–orbit coupling with the metal orbitals of the central
fragment thus promoting radiationless decay.
Another intriguing photophysical feature of the present Au–Cu
clusters 1 and 2 is the nearly complete disappearance of emission
resulting from the partial protonatation of the amine groups. We
elucidated the photophysical effects of the partial protonation by
inspecting the frontier orbitals of the cluster 1 with the number of
MeSO3H molecules varying from zero to six. Partial protonation
has distinct effects on the frontier orbital characteristics, as
illustrated for a four-fold protonated cluster 1*(MeSO3H)4 in
Figure S13.† As the protonation of the amine groups reduces their
electron-donating effects, the orbitals of the protonated C2C6H4-
4-NMe2 ligands are shifted down in energy and the HOMOs
become localized on the non-protonated C2C6H4-4-NMe2 ligands.
In contrast, the dominant contributions to the LUMO come
from the protonated ligands, the non-protonated ligands having a
smaller contribution. The strongly reduced delocalization of the
central fragment based frontier orbitals makes the excited triplet
state much less susceptible to spin–orbit coupling effects of the
metal orbitals, thus annihilating pathways for effective radiative
decay.
Acknowledgements
Financial support from Academy of Finland (I. O. K.), Russian
Foundation for Basic Research (grants 07-03-00908-a and 09-03-
12309) and European Union: European Regional Development
Fund (A. J. K., grant 70026/08) is acknowledged.
Notes and references
1 M. A. Baldo, M. E. Thompson and S. R. Forrest, Pure Appl. Chem.,
1999, 71, 2095–2106; C. Fave, T.-Y. Cho, M. Hissler, C.-W. Chen, T.-Y.
Luh, C.-C. Wu and R. Reau, J. Am. Chem. Soc., 2003, 125, 9254–9255;
Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing and F. Wang,
Adv. Mater., 2004, 16, 432–436; C. E. Powell and M. G. Humphrey,
Coord. Chem. Rev., 2004, 248, 725–756; W. L. Jia, T. McCormick, Y.
Tao, J.-P. Lu and S. Wang, Inorg. Chem., 2005, 44, 5706–5712; M. A.
Rawashdeh-Omary, J. M. Lopez-de-Luzuriaga, M. D. Rashdan, O.
Elbjeirami, M. Monge, M. Rodriguez-Castillo and A. Laguna, J. Am.
Chem. Soc., 2009, 131, 3824–3825.
2 O. Crespo, in Modern Supramolecular Gold Chemistry, ed. A. Laguna,
Wiley-VCH, Weinheim, 2008, pp. 65–131C. Silvestru, in Mod-
ern Supramolecular Gold Chemistry, ed. A. Laguna, Wiley-VCH,
Weinheim, 2008, pp. 181–295; Q.-H. Wei, L.-Y. Zhang, G.-Q. Yin,
L.-X. Shi and Z.-N. Chen, J. Am. Chem. Soc., 2004, 126, 9940–9941;
E. J. Fernandez, A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge,
M. Montiel and M. E. Olmos, Inorg. Chem., 2005, 44, 1163–1165;
E. J. Fernandez, A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge, M.
Montiel, M. E. Olmos and M. Rodriguez-Castillo, Organometallics,
2006, 25, 3639–3646; M. C. Gimeno and A. Laguna, Chem. Soc. Rev.,
2008, 37, 1952–1966; S.-Y. Yu, Q.-F. Sun, T. K.-M. Lee, E. C.-C. Cheng,
Y.-Z. Li and V. W.-W. Yam, Angew. Chem., Int. Ed., 2008, 47, 4551–
4554; Q.-F. Sun, T. Kwok-Ming Lee, P.-Z. Li, L.-Y. Yao, J.-J. Huang, J.
Huang, S.-Y. Yu, Y.-Z. Li, E. C.-C. Cheng and V. W.-W. Yam, Chem.
Commun., 2008, 5514–5516.
3 I. O. Koshevoy, L. Koskinen, M. Haukka, S. P. Tunik, P. Y.
Serdobintsev, A. S. Melnikov and T. A. Pakkanen, Angew. Chem., Int.
Ed., 2008, 47, 3942–3945; I. O. Koshevoy, A. J. Karttunen, S. P. Tunik,
M. Haukka, S. I. Selivanov, A. S. Melnikov, P. Y. Serdobintsev and
T. A. Pakkanen, Organometallics, 2009, 28, 1369–1376.
4 I. O. Koshevoy, Y.-C. Lin, A. J. Karttunen, P.-T. Chou, P. Vainiotalo,
S. P. Tunik, M. Haukka and T. A. Pakkanen, Inorg. Chem., 2009, 48,
2094–2102.
5 I. O. Koshevoy, Y.-C. Lin, A. J. Karttunen, M. Haukka, P.-T. Chou,
S. P. Tunik and T. A. Pakkanen, Chem. Commun., 2009, 2860–2862.
6 I. O. Koshevoy, A. J. Karttunen, S. P. Tunik, M. Haukka, S. I. Selivanov,
A. S. Melnikov, P. Y. Serdobintsev, M. A. Khodorkovskiy and T. A.
Pakkanen, Inorg. Chem., 2008, 47, 9478–9488.
7 M. Atmeh, N. R. Russell, R. J. Forster and T. E. Keyes, J. Inclusion
Phenom. Macrocyclic Chem., 2007, 57, 607–612; M. Kovacs, Inorg.
Chim. Acta, 2007, 360, 345–352.
8 B. Geisser and R. Alsfasser, Journal of Information Recording, 2000,
25, 165–174; B. Geisser, T. Skrivanek, U. Zimmermann, D. J. Stufkens
and R. Alsfasser, Eur. J. Inorg. Chem., 2001, 439–448.
9 K. M.-C. Wong, W.-S. Tang, X.-X. Lu, N. Zhu and V. W.-W. Yam,
Inorg. Chem., 2005, 44, 1492–1498; M. Cattaneo, F. Fagalde and N. E.
Katz, Inorg. Chem., 2006, 45, 6884–6891; A. Quaranta, F. Lachaud, C.
Herrero, R. Guillot, M.-F. Charlot, W. Leibl and A. Aukauloo, Chem.–
Eur. J., 2007, 13, 8201–8211; E. C. Constable, C. E. Housecroft, A. C.
Thompson, P. Passaniti, S. Silvi, M. Maestri and A. Credi, Inorg. Chim.
Acta, 2007, 360, 1102–1110.
Conclusion
We have reported the structurally similar luminescent AuI–CuI
alkynyl-diphosphine clusters 1–3 bearing NMe2 and NH2 groups
and their reactions with strong sulfonic acids (HSO3Me and
HSO3CF3), which result in protonation of the amine func-
tionalities and formation of the adducts [Au6Cu2(C2C6H4-4-
R)6*(R’SO3H)6(PPh2C6H4PPh2)3](PF6)2 (R = 4-NMe2 (4), 4-NH2
(5), 3-NH2 (6)). The photophysical measurements revealed a
considerable hypsochromic shift of the emission maxima for the
protonated species (ca. 100 nm for 4 and 5) and large increase
in phoshorescence quantum yield (8-fold for 4, 33-fold for 5
related to the parent species 1 and 2, respectively). The adduct
formation was found to be reversible as addition of a base (NEt3)
2682 | Dalton Trans., 2010, 39, 2676–2683
This journal is
The Royal Society of Chemistry 2010
©