W. Uhl et al. · Hydrometallation (M = Al, Ga) of Silicon- and Germanium-centred Oligoalkynes
1343
(m, 2 H, p-H, GePh2), 6.96 (pseudo-t, 2 H, JHH = 6.7 −15 ◦C to yield compound 12 as a colourless solid (0.352 g,
Hz, m-H, C=CHPh), 6.92 (t, 1 H, p-H, C=CHPh), 6.89 (t, 98%); m. p. (argon, sealed capillary): 87◦C. – IR (CsI, paraf-
1 H, p-H, C≡C-Ph), 6.88 (pseudo-t, 2 H, m-H, C≡C-Ph), fin): ν = 2196 w, 2156 s, 2116 m ν(C≡C); 1644 w, 1603
1.38 ppm (s, 18 H, GaCMe3). – 13C NMR (100.62 MHz, s, 1566 m, 1556 m, 1533 s, 1511 m [ν(C=C), aromatic
C6D6): δ = 154.2 (C =C-Ph), 151.7 (C=C-Ph), 141.4 (ipso- ring]; 1454 vs (paraffin); 1411 w δ(CH3); 1382 vs (paraf-
C, C=CHPh), 137.3 (ipso-C, GePh2), 134.9 (o-C, GePh2), fin); 1365 s, 1305 w, 1287 w, 1253 s δ(CH3); 1202 m,
133.0 (o-C, C≡C-Ph), 129.7 (p-C, GePh2), 129.6 (p-C, 1179 m, 1138 w, 1112 w, 1071 m, 1044 m, 1030 w, 1006
C≡C-Ph), 128.8 (m-C, GePh2), 128.6 (m-C, C≡C-Ph and w, 999 w, 955 m, 940 s, 889 m, 850 m, 835 w, 808 m,
C=CHPh), 128.1 (o-C, C=CHPh), 127.9 (p-C, C=CHPh), 791 m, 767 s, 753 w [δ(CH), ν(CC)]; 720 vs (paraffin);
122.2 (ipso-C, C≡C-Ph), 110.0 (C≡C-Ph), 93.0 (C≡C-Ph), 677 m, 660 m (aromatic ring); 639 vw, 615 s, 573 m, 564
30.8 (GaCMe3), 29.5 ppm (GaCMe3). – MS ((+)-EI; 20 eV; m, 520 m, 502 w, 475 w, 448 m cm−1 [ν(SiC), ν(AlC),
351 K): m/z (%) = 557 (100) [M–CMe3]+, 501 (6) [M– δ(CC)]. – 1H NMR (400.03 MHz, C6D6): δ = 6.95 (s,
CMe3–butene]+. – C36H39GaGe (614.0): calcd. C 70.4, H 3JSiH = 29.8 Hz, 1 H, C=CH), 6.76 (s, 2 H, m-H), 2.89
3
6.4; found C 70.5, H 6.4.
(s, 6 H, o-Me), 2.37 (m, 2 H, AlCH2CHMe2), 2.05 (s, 3
H, p-Me), 1.32 (d, JHH = 6.5 Hz, 12 H, AlCH2CHMe2),
3
(F5C6)2Ge(C≡C–CMe3){C[Al(CMe3)2]=CH–CMe3} (11)
1.13 (s, 9 H, C=C–CMe3), 1.09 (s, 18 H, (C≡C–CMe3),
0.70 ppm (d, JHH = 7.0 Hz, 4 H, AlCH2CHMe2). – 13C
3
A solution of (F5C6)2Ge(C≡C–CMe3)2 (7) (0.430 g,
0.76 mmol) in toluene (10 mL) was added to a solution of
HAl(CMe3)2 (0.118 g, 0.83 mmol) at room temperature. The
mixture was stirred for 2 h. The solvent was removed in
vacuo, and the residue was recrystallised from n-pentane at
−30 ◦C to yield 11 as a colourless solid (0.473 g, 88%); m.
p. (argon, sealed capillary): 83◦C (dec.). – IR (CsI, paraffin):
ν = 2193 m, 2158 m, 2120 w ν(C≡C); 1942 vw, 1869 vw,
1719 vw, 1639 s, 1605 m, 1582 w, 1549 w, 1516 vs [ν(C=C),
aromatic ring]; 1456 vs, 1377 vs (paraffin); 1341 m, 1304 w;
NMR (100.59 MHz, C6D6): δ = 166.8 (C=C–CMe3), 144.9
(o-C), 140.9 (br. s, C =C–CMe3), 139.8 (p-C), 129.9 (m-C
and ipso-C), 122.2 (C≡C–CMe3), 83.7 (C≡C–CMe3), 39.6
(C=C–CMe3), 30.1 (C≡C–CMe3), 29.0 (C=C–CMe3), 28.9
(C≡C–CMe3), 28.8 (AlCH2CHMe2), 27.0 (AlCH2CHMe2),
26.6 (AlCH2CHMe2), 25.5 (o-Me), 21.1 ppm (p-Me). – 29Si
NMR (79.5 MHz, C6D6): δ = −63.1 ppm. – MS ((+)-EI;
20 eV; 298 K): m/z (%) = 475 (100) [M–CMe3]+.
1285 s ν(CF); 1254 s δ(CH3); 1219 m, 1204 m, 1179 w, Mes-Si(C≡C–CMe3)2{C[Al(CMe3)2]=CH–CMe3} (13)
1138 vw, 1084 vs, 1049 w, 1028 w, 1009 m, 972 vs, 934 m,
889 m, 845 w, 812 m, 773 w 752 m [ν(CF), δ(CH), ν(CC)];
A
solution of Mes-Si(C≡C–CMe3)3 (2) (0.316 g,
723 s (paraffin); 665 w, 635 w, 619 m, 583 m, 571 w, 557 w,
0.810 mmol) in toluene (10 mL) was added at room temper-
ature to a solution of HAl(CMe3)2 (0.115 g, 0.810 mmol)
in toluene (15 mL). The mixture was stirred overnight, the
volatiles were removed in vacuo, and the residue was recrys-
tallised from pentafluorobenzene at −20 ◦C to yield com-
pound 13 as a colourless solid (0.425 g, 98%); m. p. (ar-
gon, sealed capillary): 107◦C. – IR (CsI, paraffin): ν =
2197 w, 2156 m, 2126 w ν(C≡C); 1603 m ν(C=C); 1458
vs, 1375 s (paraffin); 1302 w, 1254 m δ(CH3); 1190 vw,
1169 w, 1153 w, 1067 vw, 1028 vw, 939 w, 891 w, 847
m, 773 m [δ(CH), ν(CC)]; 721 s (paraffin); 660 w, 615 w,
567 w, 530 vw, 472 vw cm−1 [ν(SiC), ν(AlC), δ(CC)]. –
1
536 w, 494 m cm−1 [ν(GeC), ν(AlC), δ(CC)]. – H NMR
(400.03 MHz, [D8]toluene): δ = 6.94 (s, 1 H, C=CH), 1.21
(s, 18 H, AlCMe3), 1.14 (s, 9 H, C≡C–CMe3), 1.02 ppm (s,
9 H, C=C–CMe3). – 13C NMR (100.59 MHz, [D8]toluene):
δ = 169.0 (C=CH), 148.6 (dm, 1JFC = 240 Hz, o-C), 142.8
(dm, 1JFC = 257 Hz, p-C), 137.9 (dm, 1JFC = 257 Hz, m-C),
134.6 (C =CH), 111.7 (ipso-C), 77.7 (C≡C–CMe3), C≡C–
CMe3 not observed, 40.4 ( C=C–CMe3), 30.4 (AlCMe3),
30.3 (C≡C–CMe3), 29.1 (C=C–CMe3), 29.0 (C≡C–CMe3),
17.8 ppm (AlCMe3). – 19F NMR (376.4 MHz, [D8]toluene):
3
δ = −128.9 (s br., 4 F, o-F), −148.9 (t, JFF = 20.3 Hz, 2
1H NMR (400.13 MHz, C6D6): δ = 6.99 (s, 1 H, JSiH
3
F, p-F), −159.1 ppm (s br., 4 F, p-F). – MS ((+)-EI; 20 eV;
343 K): m/z (%) = 655 (100) [M–CMe3]+.
= 30.4 Hz, C=CH), 6.76 (s, 2 H, m-H), 2.89 (s, 6 H, o-
Me), 2.05 (s, 3 H, p-Me), 1.43 (s, 18 H, AlCMe3), 1.23
(s, 9 H, C=C–CMe3), 1.09 ppm (s, 18 H, C≡C–CMe3). –
13C NMR (100.62 MHz, C6D6): δ = 167.8 (C=C–CMe3),
Mes-Si(C≡C–CMe3)2{C[Al(CH2CHMe2)2]=CH–CMe3}
(12)
A
solution of Mes-Si(C≡C–CMe3)3 (2) (0.264 g, 145.2 (o-C), 139.7 (p-C), 139.5 (br. s, C =C–CMe3), 129.9
0.677 mmol) in toluene (15 mL) was added at room tem- (m-C), 129.8 (ipso-C), 123.9 (C≡C–CMe3), 82.9 (C≡C–
perature to a solution of HAl(CH2CHMe2)2 (0.096 g, CMe3), 40.3 (C=C–CMe3), 31.3 (AlCMe3), 30.3 (C≡C–
0.676 mmol) in toluene (15 mL). The mixture was stirred CMe3), 29.0 (C≡C–CMe3), 28.6 (C=C–CMe3), 25.2 (o-
overnight, the volatiles were removed in vacuo and the Me), 21.0 (p-Me), 18.7 ppm (br. s, AlCMe3). – 29Si NMR
residue was recrystallised from 1,2-difluorobenzene at (79.5 MHz, C6D6): δ = −61.1 ppm. – MS ((+)-EI; 50 eV;
Brought to you by | Purdue University Libraries
Authenticated
Download Date | 5/23/15 3:31 AM