X. M. Ye et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2195–2199
2199
Cl
Cl
Cl
O
S
O
S
O
S
O
O
O
chiral HPLC separation
N
N
N
N
N
NH
NH
N
NH
36
37
35
Scheme 8.
to improve its in vivo pharmacokinetic profile will be reported in
another Letter.
Acknowledgements
We would like to thank Gary D. Probst, Daniel Ness, Lee Latimer,
Michael Dappen, Jing Wu, David Quincy, Pam Keim, Lan Nguyen,
William Wallace, David Nakamura, Karina Wong, Wes Zmolek, Mi-
chael Lee, Kang Hu, Anna Liao, Terence Hui, Tracy Cole, Cristian
Cabrera, Ferdie Soriano, Bhushan Samant, Rose Lawler, Juri Fukada
for their contributions to this work. We also would like to thank
Wherly Hoffman for data statistics analysis and Hu Pan for X-ray
structure display.
Figure 2. Compound 37 (inactive enantiomer).
Although we do not have a clear understanding of this result,
we believe the potency loss may be due to steric effect that forces
the molecule to twist its conformation. We then decided to make
the simple diethyl substituted compound and to see if this less
crowded molecule would be more potent.
References and notes
1. (a) Selkoe, D. J.; Schenk, D. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 545; (b)
Wolfe, M. S. J. Med. Chem. 2001, 44, 2039.
The same chemistry illustrated in Scheme 7 was used to make
this symmetrical di-substituted pyrazolopiperidine compounds
such as 35, just switching the 4-chlorophenylmagnesium bromide
with ethylmagnesium bromide. Indeed, compound 35 is extremely
potent demonstrating picomolar APP activity (see Table 3). Com-
pound 35 was subjected to chiral HPLC separation using Chiralcel
OD column, eluting with ethanol/hexane mixture, to afford both
enantiomers, 36 and 37, each in greater than 99% ee (Scheme 8).
Absolute configuration of the compound 37 (the inactive enantio-
mer) was determined by analysis of anomalous X-ray scattering by
the single crystal. The determination (CCDC 764934) indicates that
the spatial configuration of the active isomer, 36, is analogous to
compound 17 (see Fig. 2).
2. Radtke, F.; Wilson, A.; Mancini, J. C.; MacDonal, H. R. Nat. Immunol. 2004, 5, 247.
3. Wong, G. T.; Manfra, D.; Poulet, F. M.; Zhang, Q.; Josien, H.; Bara, T.; Engstrom,
L.; Pinzon-Ortiz, M.; Fine, J. S.; Lee, H. J.; Zhang, L.; Higgins, G. A.; Parker, E. M. J.
Biol. Chem. 2004, 279, 12876.
4. Dovey, H. F.; John, V.; Anderson, J. P.; Chen, L. Z.; de Saint Andrieu, P.; Fang, L.
Y.; Freedman, S. B.; Folmer, B.; Goldbach, E.; Holsztynska, E. J.; Hu, K. L.;
Johnson-Wood, K. L.; Kennedy, S. L.; Kholodenko, D.; Knops, J. E.; Latimer, L. H.;
Lee, M.; Liao, Z.; Lieberburg, I. M.; Motter, R. N.; Mutter, L. C.; Nietz, J.; Quinn, K.
P.; Sacchi, K. L.; Seubert, P. A.; Shopp, G. M.; Thorsett, E. D.; Tung, J. S.; Wu, J.;
Yang, S.; Yin, C. T.; Schenk, D. B.; May, P. C.; Altstiel, L. D.; Bender, M. H.; Boggs,
L. N.; Britton, T. C.; Clemens, J. C.; Czilli, D. L.; Dieckman-McGinty, D. K.; Droste,
J. J.; Fuson, K. S.; Gitter, B. D.; Hyslop, P. A.; Johnstone, E. M.; Li, W.-Y.; Little, S.
P.; Mabry, T. E.; Miller, F. D.; Ni, B.; Nissen, J. S.; Porter, W. J.; Potts, B. D.; Reel, J.
K.; Stephenson, D.; Su, Y.; Shipley, L. A.; Whitesitt, C. A.; Yin, T.; Audia, J. E. J.
Neurochem. 2001, 76, 173.
5. Olson, R. E.; Albright, C. F. Curr. Top. Med. Chem. 2008, 8, 17.
6. Garofalo, A. W. Expert Opin. Ther. Pat. 2008, 18, 693.
Although compound 36 is extremely potent, it still suffers from
poor metabolic stability. Metabolic identification studies revealed
that the poor metabolic stabilities arise from the ethyl groups
and the methylene group adjacent to pyrazole ring. Also, the stud-
ies revealed that the p-chlorobenzenesulfonamide was oxidized to
an epoxide followed by glutathione conjugation. The glutathione
conjugation problem was alleviated when trifluoromethyl was
used to replace the chlorine substituent. At the same time, the
diethyl groups were replaced by dicyclopropyl groups and the sub-
sequent molecule 38 (its synthesis will be disclosed in a separate
Letter) afforded higher stability in an in vitro glucuronidation as-
say, although it still performed poorly in an in vitro oxidation as-
say. Table 3 lists the data of those compounds.
The in vivo efficacy of compound 36 was evaluated in the wild
type FVB mouse model. A significant 25% Ab40 reduction was ob-
served 3 h after a single 5 mg/kg po dose of 36 (brain/plasma: 0.8).
In summary, we have identified a novel, potent and efficacious
series of c-secretase inhibitors. This series displays in vivo activity
for reduction of brain Ab. Although this series achieved a good effi-
7. Mattson, M. N.; Neitzel, M. L.; Quincy, D. A.; Semko, C. M.; Garofalo, A. W.;
Keim, P. S.; Konradi, A. W.; Pleiss, M. A.; Sham, H. L.; Brigham, E. F.; Goldbach, E.
G.; Zhang, H.; Sauer, J.-M.; Basi, G. S. Bioorg. Med. Chem. Lett. 2010, 20, 2148.
8. Schering Corp. WO05028440, 2005.
9. Schering Corp. WO04101562, 2004.
10. Schering Corp. WO07084595, 2007.
11. Wyeth-Arqule. WO03103660, 2007.
12. Wyeth. WO05073198, 2005.
13. Bristol-Myers Squibb CO. WO05054180, 2005.
14. F. Hoffmann-La Roche AG. WO07020190, 2007.
15. Elan Pharmaceuticals, Inc. WO05042489, 2005.
16. Elan Pharmaceuticals, Inc. WO06078753, 2006.
17. IC50s determined as described in Ref. 11 in Truong, A. P.; Aubele, D. L.; Probst,
G. D.; Neitzel, M. L.; Semko, C. M.; Bowers, S.; Dressen, D.; Hom, R. K.; Konradi,
A. W.; Sham, H. L.; Garofalo, A. W.; Keim, P. S.; Wu, J.; Dappen, M. S.; Wong, K.;
Goldbach, E.; Quinn, K. P.; Sauer, J.-M.; Brigham, E. F.; Wallace, W.; Nguyen, L.;
Hemphill, S. S.; Bova, M. P.; Basi, G. Bioorg. Med. Chem. Lett. 2009, 19, 4920.
18. Trost, B. M.; Hiroi, K.; Jungheim, L. N. J. Org. Chem. 1980, 45, 1839.
19. Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668.
20. Brown, J. D.; Foley, M. A.; Comins, D. L. J. Am. Chem. Soc. 1988, 110, 7445.
21. Asberom, T.; Clader, J. W.; Josien, H. B.; Pissarnitski, D. A.; Zhao, Z.; Mcbriar, M.
D. PCT/US2005/011456.
22. Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986, 27, 4549.
23. Basi, G.S. et al. In preparation.
cacy result, it has suffered from poor metabolic stability. Our effort