228 Letters in Organic Chemistry, 2010, Vol. 7, No. 3
Zhang et al.
[6]
[7]
[8]
[9]
Braun, D.; Weinert, J. Reaction of epoxides with isocyanates, II.
Preparation and characterization of 2-oxazolidinones. Liebigs Ann.
1979, 200.
protocol demonstrated a convenient approach toward a
library of active 1,2,3-triazole-oxazolidinone derivatives in
the search for future therapeutic antibiotics.
Shibata, I., Baba, A.; Iwasaki, H.; Matsuda, H. Cycloaddition
reaction of heterocumulenes with oxiranes catalyzed by organotin
iodide-Lewis base complex. J. Org. Chem. 1986, 51, 2177.
Fujiwara, M.; Baba, A.; Tomohisa, Y.; Matsuda, H. Cycloaddition
reaction of 2,3-disubstituted oxiranes with isocyanates by highly
activated catalyst; Ph4SbI–Bu3SnI. Chem. Lett. 1986, 1963.
Qian, C. -T.; Zhu, D. -M. A facile synthesis of Oxazolidinones via
Lanthanide –catalyzed cycloaddition of epoxides with isocyanates.
Synlett, 1994, 129.
GENERAL EXPERIMENTAL PROCEDURE
General
For
product
purification
by
flash
column
chromatography, silica gel (200~300 mesh) and light
o
1
[10]
[11]
Zhang. X. -X.; Li, W. -D. The synthetic applications of Lewis
acidic Mg(ꢀ). Chin. J. Org. Chem., 2003, 23, 1185.
petroleum ether (PE, b.p. 60~90 C) were used. H NMR
spectra were taken on a Bruker Avance-500 spectrometer
with TMS as an internal standard and CDCl3 as solvent. FT-
IR was recorded on a Bruker Tensor 27 spectrometer.
Melting points were measured on BUCHI B-540 and
uncorrected.
(a) Zhang, X, -X. MgI2 Etherate-promoted allylation of aldehydes:
simple and efficient synthesis of homoallylic alcohols Lett. Org.
Chem. 2007, 4, 246. (b) Li, W. -D.; Zhang. X. -X. Chemoselective
aldol reaction of silyl enolates catalyzed by MgI2 etherate. Org.
Lett. 2002, 4, 3485.
(a) Denmark, S. E.; Stavenger, R. A. Asymmetric catalysis of aldol
reactions with chiral Lewis bases. Acc. Chem. Res. 2000, 33, 432.
(b) Denmark, S. E.; Wynn, T. Lewis base activation of Lewis acids:
catalytic enantioselective allylation and propargylation of
aldehydes. J. Am. Chem. Soc. 2001, 123, 6199.
[12]
[13]
The Representative Procedure for the Synthesis of 2-
oxazolidinones
To a stirred solution of freshly prepared MgI2 etherate
(2.5 mmol) in THF (10 mL) was added dropwise
epichlorohydrin (552 mg, 6 mmol) followed by addition of
phenyl isocyanate (595 mg, 5 mmol) at room temperature.
After addition, the reaction mixture was allowed to warm to
65 °C and continued to be stirred for 2 hours. The resulting
homogeneous reaction mixture was quenched with saturated
Na2SO3 aqueous solution. Extractive workup with CH2Cl2
and flash chromatographic purification of the crude product
on silica gel gave the 2-oxazolidinone 1a (970 mg) in 92%
yield.
Spectroscopic Data for Selected Products (Table 1): compound
1b: Mp. 97.5-98.5 °C; IR (KBr) 1735 cm-1 (C=O); 1H NMR
(CDCl3) ꢁ 2.19 (s, 3H), 2.30 (s, 3H), 3.75-3.82 (m, 1H), 3.83 (dd, J
= 2.0, 6.0 Hz , 2H), 4.03 (t, J = 9.0 Hz, 1H), 4.89-4.94 (m, 1H),
7.09 (dd, J = 2.5, 6.5 Hz , 1H), 7.12-7.16 (m, 2H) ppm. compound
1c: Mp 73.0-73.8 °C; IR (KBr) 1736 cm-1 (C=O); 1H NMR (CDCl3)
ꢁ 3.77-3.85 (m, 2H), 3.94 (dd, J = 5.0, 9.5 Hz , 1H), 4.17-4.21 (m,
1H), 4.93-4.98 (m, 1H), 7.00-7.06 (m, 1H), 7.27-7.31 (m,1H) ppm;
EI-MS: 265 ([M]+, 22), 267 ([M+2]+, 8),186 (100), 166(31), 158
(63). compound 1e: Mp 125.0-127.2 °C; IR (KBr) 1738 cm-1
1
(C=O); H NMR (CDCl3) ꢁ 3.74-3.80 (m, 2H), 3.91 (dd, J = 6.0,
9.0 Hz, 1H), 4.13 (t, J = 9.0 Hz, 1H), 4.85-4.90 (m, 1H), 7.41-7.44
(m, 2H), 7.46-7.49 (m, 2H) ppm. compound 1g: Mp 43.4-44.0 °C;
IR (KBr) 1748 cm-1 (C=O); 1H NMR (CDCl3) ꢁ 1.54 (d, J = 6.5Hz,
3H), 2.26 (s, 3H), 3.50 (dd, J = 6.5, 8.5 Hz, 1H), 3.98 (t, J = 8.0
Hz, 1H), 4.80-4.86 (m, 1H), 7.20-7.22 (m, 3H)ppm. compound 1i:
ACKNOWLEDGEMENTS
1
Mp 126.5-127.5 °C; IR (KBr) 1745 cm-1 (C=O); H NMR (CDCl3)
This work was supported by Zhejiang University of
Technology Younger Scholars Program and Zhejiang
Provincial Undergraduate Innovative Experimental Program.
ꢁ 2.33 (s, 3H), 4.03 (dd, J = 6.0, 9.0 Hz , 1H), 4.14-4.23 (m, 3H),
4.95 (dd, J = 4.5, 9.0 Hz , 1H), 6.90 (d, J = 8.0 Hz , 2H), 6.99 (t, J
= 7.5 Hz , 1H), 7.18 (d, J = 8.5 Hz , 2H), 7.29 (dd, J = 7.5, 8.0 Hz ,
2H), 7.44 (d, J = 8.5 Hz , 2H) ppm. compound 2: Mp 115.4-115.7
1
°C; IR (KBr) 1740 cm-1 (C=O); H NMR (CDCl3) ꢁ 4.01 (dd, J =
REFERENCES
6.0, 9.0 Hz, 1H), 4.17 (t, J = 9.0 Hz, 1H), 4.56 (d, J = 5.0 Hz, 2H),
5.00-5.05 (m, 1H), 7.14-7.17 (m, 1H), 7.35-7.39 (m, 2H), 7.43-7.46
(m, 2H), 7.95 (s, 1H), 8.24 (s, 1H) ppm. compound 3: Mp 150.5-
151.4 °C; IR (KBr) 1741 cm-1(C=O); 1H NMR (CDCl3) ꢁ 4.07 (dd,
J = 6.0, 9.0Hz, 1H), 4.21 (t, J = 9.0 Hz, 1H), 4.98-5.06 (m, 2H),
5.17-5.22 (m, 1H), 7.13 (t, J = 7.0 Hz, 1H), 7.31-7.37 (m, 4H), 7.42
(t, J = 7.0 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.72 (d, J = 8.0 Hz,
1H), 8.06 (d, J = 8.0 Hz, 1H) ppm. compound 5a: Mp 175.0-175.5
[1]
(a) Park, C. -H.; Brittelli, D. R.; Wang, C. L. -J.; Marsh, F. D.;
Gregory, W. A.; Wuonola, M. A.; McRipley, R. J.; Eberly, V. S.;
Slee, A. M.; Forbes, M. Antibacterials. Synthesis and structure-
activity studies of 3-aryl-2-oxazolidinones. 4. Multiply- substituted
aryl derivatives. J. Med. Chem. 1992, 35, 1156. (b) Brickner, S. J.;
Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.; Ulanowicz,
D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.;
Ford, C. W.; Zurenko, G. E. Synthesis and antibacterial activity of
U-100592 and U-100766, two oxazolidinone antibacterial agents
for the potential treatment of multidrug-resistant gram-positive
bacterial infections. J. Med. Chem. 1996, 39, 673. (c) Selvakumar,
N.; Srinivas, D.; Khera, M. K.; Kumar, M. S.; Mamigi, R. N. V. S.;
Sarnaik, H.; Charavaryamath, C.; Rao, B. S.; Raheem, M. A.; Das,
J.; Iqbal, J.; Rajagopalan, R. Synthesis of conformationally
constrained analogues of Linezolid: structureꢀactivity relationship
(SAR) studies on selected novel tricyclic oxazolidinones. J. Med.
Chem. 2002, 45, 3953.
°C; IR (KBr) 1761 cm-1 (C=O); H NMR (CDCl3) ꢁ 3.95 (dd, J =
6.5, 9.5 Hz, 1H), 4.19 (t, J = 9.0 Hz, 1H), 4.74 (dd, J = 5.0, 14.5
Hz, 1H), 4.81 (dd, J = 4.0, 14.5 Hz, 1H), 5.05-5.08 (m, 1H), 7.14 (t,
J = 7.0 Hz, 1H), 7.32-7.36 (m, 3H), 7.40-7.44 (m, 4H), 7.81-7.82
(m, 2H), 8.00 (s, 1H) ppm.
For recent reviews on 1, 2, 3-triazoles, see: (a) Kolb, H. C.;
Sharpless, K. B. The growing impact of click chemistry on drug
discovery. Drug Discov. Today 2003, 8, 1128. (b) Wu, P.; Fokin,
V. V. Catalytic azide-alkyne cycloaddition: reactivity and
applications. Aldrichim. Acta 2007, 40, 7. (c) Moses, J. E.;
Moorhouse, A. D. The growing applications of click chemistry.
Chem. Soc. Rev., 2007, 36, 1249.
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse
chemical function from a few good reactions. Angew. Chem., Int.
Ed. Engl., 2001, 40, 200.
Wu, H.-Y.; Ding, J.-C.; Liu, Y.-K. Samarium triiodide catalyzed
cycloaddition of epoxides with isocyanates: a facile synthesis of
oxazolidinones. J. Indian Chem. Soc., 2003, 80(1), 36.
[14]
[2]
[3]
[4]
[5]
Speranza, G. P.; Peppel, W. J. Preparation of substituted 2-
oxazolidones from 1, 2-epoxides and isocyanates. J. Org. Chem.
1958, 23, 1922.
Herweh, J. E.; Kauffman, W. J. 2-Oxazolidones via the lithium
bromide catalyzed reaction of isocyanates with epoxides in
hydrocarbon solvents. Tetrahedron Lett. 1971, 12, 809.
Herweh, J. E.; Foglia, T. A.; Swern, D. Synthesis and nuclear
magnetic resonance spectra of 2-oxazolidones. J. Org. Chem. 1968,
33, 4029.
[15]
[16]
Weiner, M. L. Reaction of phenyl isocyanate with phenyl glycidyl
ether. J. Org. Chem. 1961, 26, 951.