X. Zeng et al. / Tetrahedron Letters 61 (2020) 152329
3
Scheme 2. Total systhesis of (+) -fawcettimine.
of the key Heathcock-type 6–5-9 tricycle 25 was accomplished fol-
Appendix A. Supplementary data
lowing treatment with DEAD/Ph3P.
Upon desulfonation of precursor 25, the (+)-fawcettimine free
base was obtained in 81% yield after C-4 epimerization and aminal
formation [9i,9n]. After treatment with aqueous HBr (1 M) the cor-
responding HBr salt was obtained. The spectral data of the syn-
thetic (+)-fawcettimine as well as its HBr salt were identical to
those reported [8,9a], including 1H NMR, 13C NMR data, mass spec-
tra and optical rotation.
Supplementary data to this article can be found online at
References
[2] W.A. Aver T.L.S. Chapter 3 Lycopodium Alkaloids A.C. Geoffrey B. Arnold The
Alkaloids: Chemistry and Pharmacology 45 1994 Academic Press 233 266
[3] W.A. Ayer Nat. Prod. Rep. 8 1991 455 463
Conclusion
In summary, we have developed a concise, asymmetric total
synthesis of (+)-fawcettimine from a known compound in 11 steps.
Highlights of the synthesis include
a palladium-catalyzed
cycloalkenylation of silyl enol ether to assemble the 6,5-fused
hydrindane and generate a quaternary carbon center in one step,
and a facile construction of the key Heathecock intermediate- 6–
5-9 tricycle via an oxa-Diels-Alder reaction followed by a Mit-
sunobu reaction.
[9] For recent reports: (a) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew.
Chem. Int. Ed. 2007, 46, 7671-3. (b) Kozak, J. A.; Dake, G. R. Angew. Chem., Int.
Ed. 2008, 47,4221; (c) Otsuka, Y.; Inagaki, F.; Mukai, C. J. Org. Chem. 2010, 75,
3420; (d)Ramharter, J.; Weinstabl, H.; Mulzer, J. J. Am. Chem. Soc. 2010, 132,
14338; (e)Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.;Wei, K. J. Org. Chem. 2011,
76, 3684; (f)Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew.
Chem., Int. Ed. 2011, 50, 8025; (g) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Shao,
H.; Meng, X. Angew. Chem., Int. Ed. 2011, 50,3916; (h) Li, H.-H.;Wang, X.-M.;
Lei, X.-G. Angew.Chem., Int. Ed. 2012, 51,491; (i) Ge, H.-M.; Zhang, L.-D.; Tan,
R.-X.; Yao, Z.-J. J. Am. Chem. Soc. 2012, 134, 12323; (j) Pan, G.-J.; Williams, R.
M. J. Org. Chem. 2012, 77,4801; (k) Shimada, N.; Abe, Y.; Yokoshima, S.;
Fukuyama, T. Angew. Chem., Int. Ed. 2012, 51, 11824; (l) Itoh, N.; Iwata, T.;
Sugihara, H.; Inagaki, F.; Mukai, C. Chem.-Eur. J. 2013, 19,8665; (m) Huo, S.-H.;
Tu, Y.-Q.; Liu, L.; Zhang, F.-M.;Wang, S.-H.; Zhang, X.-M. Angew. Chem., Int. Ed.
2013, 52,11373; (n) Xu, K.;Cheng, B.; Li, Y.; Xu, T.-T.; Yu, C.-M.; Zhang, J.; Ma,
Z.-Q.; Zhai, H.-B. Org. Lett. 2014, 16,196; (o) Zaimoku, H.; Taniguchi, T. Chem.-
Eur. J. 2014, 20,9613. (p) Zeng, C.; Zhao, J. Y.; Zhao, G. Tetrahedron 2015, 71,
64-6(q) Liu, K. M.; Chau, C. M.; Sha, C. K. Chem. Commun. 2008, 91-93
Declaration of Competing Interest
The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments
We gratefully acknowledge the financial support from the NSFC
(grant #21772200, 21971243).