Scheme 10 Chemical ligation of mono free amino isopentapeptide 12.
Again, when S-acyl isopentapeptide 12 was suspended in
NaH2PO4–Na2HPO4 at pH 7.8 and irradiated with microwave
at 50 watts and 50 ◦C for one hour. HPLC-MS analysis (ESI) con-
firmed the major product to be 16, produced by the desired ligation
(Scheme 10, Table 3). This result indicates that intramolecular 14-
membered ring nucleophilic attack by the amino group on the
thioester in 12 was also faster than intermolecular attack by one
of molecule of 12 on another.
Haase and Seitz recently demonstrated that an internal cysteine
residue can accelerate thioester based peptide ligation up to 25
fold providing indirect evidence for S- to N-acyl transfer via 8,
11, 14, 17, 20, or 23-membered transition states to form native
peptides (in 3–56% hplc yields).17 Our results show that 11- and 14-
membered transition states allow easy intramolecular ligation to
form native peptides, but an 8-membered transition state reaction
is disfavoured.
In conclusion, we have demonstrated (i) selective S-acylation,
in good yields and under mild conditions, of cysteine peptides
having free hydroxyl and/or carboxyl groups; (ii) solution phase
Fmoc group deprotection of N-Fmoc-S-acyl isotri-, isotetra- and
isopenta-peptides having free carboxyl groups in 15 min with
DBU and (iii) microwave assisted chemical ligation involving the
migration of cysteine S-acyl groups in 9 and 12 to N-terminal
amino acids in these peptides via 11- and 14-membered transition
states.
As in native chemical ligation, these chemical ligations take
place utilizing a single cysteine, without the use of auxiliaries. S-
Acyl isopentapeptide 12 was converted into native pentapeptide
16 as major product (Table 3). Isotetrapeptide 9 gave native
tetrapeptide 15 as major product (Table 3) and characterized by
HPLC-MS. However, isotripeptide 5b gave a mixture of the desired
ligated product 13 (3%) together with disproportionation product
14 (>85%) of intermolecular trans-acylation. This indicates that,
intermolecular trans-acylation is favoured over an 8-membered
cyclic transition state, whereas intramolecular chemical ligation
reactions are preferred when they are produced via 5-, 11- and
14-membered transition states.
S. B. H. Kent, Org. Lett., 2007, 9, 687–690; (d) J. P. Richardson and D.
Macmillan, Org. Biomol. Chem., 2008, 6, 3977–3982; (e) S. Anderson,
Langmuir, 2008, 24, 13962–13968; (f) Q. Wan, J. Chen, Y. Yuan and
S. J. Danishefsky, J. Am. Chem. Soc., 2008, 130, 15814–15816; (g) P. M.
Moyle, C. Olive, M.-F. Ho, M. Burgess, L. Karpati, M. F. Good and I.
Toth, J. Org. Chem., 2006, 71, 6846–6850; (h) C. R. Bertozzi and L. L.
Keissling, Science, 2001, 291, 2357–2364; (i) C. Haase and O. Seitz,
Angew. Chem., Int. Ed., 2008, 47, 1553–1556; (j) T. M. Hackeng, J. H.
Griffin and P. E. Dawson, Proc. Natl. Acad. Sci. U. S. A., 1999, 96,
10068–10073.
3 T. Wieland, E. Bauer, H. U. Lang and H. Lau, Liebigs Ann. Chem.,
1958, 583, 129–149.
4 (a) P. E. Dawson and S. B. H. Kent, Annu. Rev. Biochem., 2000, 69, 923–
960; (b) S. B. H. Kent, Chem. Soc. Rev., 2009, 38, 338–351; (c) R. J. Payne
and C.-H. Wong, Chem. Commun., 2010, 46, 21–43; (d) M. Schno¨lzer
and S. B. H. Kent, Science, 1992, 256, 221–225; (e) E. Saxon and C. R.
Bertozzi, Science, 2000, 287, 2007–2010; (f) C. P. R. Hackenberger and
D. Schwarzer, Angew. Chem., Int. Ed., 2008, 47, 10030–10074.
5 (a) J. Offer, C. N. C. Boddy and P. E. Dawson, J. Am. Chem. Soc., 2002,
124, 4642–4646; (b) B. Wu, J. Chen, J. D. Warren, G. Chen, Z. Hua
and S. J. Danishefsky, Angew. Chem., Int. Ed., 2006, 45, 4116–4125;
(c) M.-Y. Lutsky, N. Nepomniaschiy and A. Brik, Chem. Commun.,
2008, 1229–1231.
6 (a) A. Brik, Y.-Y. Yang, S. Ficht and C.-H. Wong, J. Am. Chem. Soc.,
2006, 128, 5626–5627; (b) A. Brik, S. Ficht, Y.-Y. Yang, C. S. Bennett
and C.-H. Wong, J. Am. Chem. Soc., 2006, 128, 15026–15033; (c) R. J.
Payne, S. Ficht, S. Tang, A. Brik, Y.-Y. Yang, D. A. Case and C.-H.
Wong, J. Am. Chem. Soc., 2007, 129, 13527–13536.
7 S. L. W. Sang and J. R. Silvius, J. Pept. Res., 2005, 66, 169–180.
8 (a) S. Shahinian and J. R. Silvius, Biochemistry, 1995, 34, 3813–3822;
(b) H. Schroeder, R. Leventis, S. Rex, M. Schelhaas, E. Nagele, H.
Waldmann and J. R. Silvius, Biochemistry, 1997, 36, 13102–13109;
(c) D. Kadereit and H. Waldmann, ChemBioChem, 2000, 200–203.
9 (a) A. R. Katritzky, P. Angrish and K. Suzuki, Synthesis, 2006, 411–424;
(b) A. R. Katritzky, M. Wang, H. Yang, S. Zhang and N. G. Akhmedov,
Arkivoc, 2002, viii, 134–142; (c) A. R. Katritzky, N. E. Abo-Dya, S. R.
Tala, K. Gyanda and Z. K. Abdel-Samii, Org. Biomol. Chem., 2009, 7,
4444–4447; (d) A. R. Katritzky, I. Avan and S. R. Tala, J. Org. Chem.,
2009, 74, 8690–8694; (e) A. R. Katritzky, P. Angrish and E. Todadze,
Synlett, 2009, 2392–2411.
10 J. D. Warren, J. S. Miller, S. J. Keding and S. J. Danishefsky, J. Am.
Chem. Soc., 2004, 126, 6576–6578.
11 M. Beyermann, M. Bienert, H. Niedrich, L. A. Carpino and D. Sadat-
Aalaee, J. Org. Chem., 1990, 55, 721–728.
12 L. A. Caprino, Acc. Chem. Res., 1987, 20, 401–407.
13 J. E. Sheppeck II, H. Kar and H. Hong, Tetrahedron Lett., 2000, 41,
5329–5333.
14 E. R. Pe´rez, M. O. Da Silva, V. C. Costa, U. P. Rodrigues-Filho and
D. W. Franco, Tetrahedron Lett., 2002, 43, 4091–4093.
15 L. Phan, J. R. Andreatta, L. K. Horvey, C. F. Edie, A.-L. Luco, A.
Mirchandani, D. J. Darensbourg and P. G. Jessop, J. Org. Chem., 2008,
73, 127–132.
16 A. P. Peterson, D. R. Goode, D. C. West, R. C. Botham and P. J.
Hergenrother, Nat. Protoc., 2010, 5, 294–302.
17 C. Haase and O. Seitz, Eur. J. Org. Chem., 2009, 2096–2101.
Notes and references
1 T. Kimmerlin and D. Seebach, J. Pept. Res., 2005, 65, 229–260.
2 (a) P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. B. H. Kent, Science,
1994, 266, 776–779; (b) D. Bang, B. L. Pentelute and S. B. H. Kent,
Angew. Chem., Int. Ed., 2006, 45, 3985–3988; (c) B. L. Pentelute and
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 2316–2319 | 2319
©