Journal of the American Chemical Society
Communication
2001, 1392. (e) Blake, A. J.; Collier, P. E.; Gade, L. H.; McPartlin, M.;
Mountford, P.; Schubart, M.; Scowen, I. J. Chem. Commun. 1997, 1555.
(f) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794.
(g) Dunn, S. C.; Hazari, N.; Cowley, A. R.; Green, J. C.; Mountford, P.
Organometallics 2006, 25, 1755.
(5) (a) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc.
1992, 114, 1708. (b) Odom, A. L.; McDaniel, T. J. Acc. Chem. Res. 2015,
48, 2822.
(6) (a) Basuli, F.; Aneetha, H.; Huffman, J. C.; Mindiola, D. J. J. Am.
Chem. Soc. 2005, 127, 17992. (b) Ruck, R. T.; Zuckerman, R. L.; Krska,
S. W.; Bergman, R. G. Angew. Chem., Int. Ed. 2004, 43, 5372.
(7) Zuckerman, R. L.; Krska, S. W.; Bergman, R. G. J. Am. Chem. Soc.
2000, 122, 751.
the second example of catalytic carbodiimide formation
mediated by an early transition metal complex.16 In the previous
example, the Zr center remained in its more stable Zr(IV)
oxidation state throughout the cycle, while two-electron redox
changes were mediated by a redox-active ligand. In the present
case, the energy difference between high-valent Nb(V) and low-
valent Nb(III) is small enough that reductive elimination of η2-
carbodiimide occurs readily in the presence of either an alkyl
azide or excess isocyanide. As demonstrated here and in our
previous work,13e,f a niobium center with a suitable ligand
environment can both give access to the unique reactivity
observed for early transition metal complexes and allow cycling
between Nb(III) and Nb(V) in catalytic processes.
(8) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995,
117, 974.
To summarize, we have discovered a novel nitrene exchange
process in which a substituent is exchanged between an
alkylimido group in a Nb(V) bis(imido) complex and an aryl
isocyanide. The reaction likely proceeds through cycloaddition
and cycloreversion involving Nb(V) η2-carbodiimide intermedi-
ates and occurs at a single metal center without elimination of
carbodiimide. In contrast, reaction with unhindered alkyl
isocyanides resulted in extrusion of carbodiimide, a process
that was rendered catalytic in the presence of excess azide.
Further exploration of the scope and mechanism of the
stoichiometric and catalytic nitrene transfer processes is ongoing.
(9) (a) Chu, J.; Lu, E.; Liu, Z.; Chen, Y.; Leng, X.; Song, H. Angew.
Chem., Int. Ed. 2011, 50, 7677. (b) Scott, J.; Basuli, F.; Fout, A. R.;
Huffman, J. C.; Mindiola, D. J. Angew. Chem., Int. Ed. 2008, 47, 8502.
(c) Chu, T.; Piers, W. E.; Dutton, J. L.; Parvez, M. Organometallics 2013,
32, 1159.
(10) (a) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6,
2519. (b) Blake, R. E.; Antonelli, D. M.; Henling, L. M.; Schaefer, W. P.;
Hardcastle, K. I.; Bercaw, J. E. Organometallics 1998, 17, 718.
(c) Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1993, 32, 131.
(11) Obenhuber, A. H.; Gianetti, T. L.; Berrebi, X.; Bergman, R. G.;
Arnold, J. J. Am. Chem. Soc. 2014, 136, 2994.
(12) (a) Obenhuber, A. H.; Gianetti, T. L.; Bergman, R. G.; Arnold, J.
Chem. Commun. 2015, 51, 1278. (b) La Pierre, H. S.; Arnold, J.; Toste, F.
D. Angew. Chem., Int. Ed. 2011, 50, 3900. (c) De With, J.; Horton, A. D.;
Orpen, A. G. Organometallics 1993, 12, 1493.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(13) (a) Tomson, N. C.; Yan, A.; Arnold, J.; Bergman, R. G. J. Am.
Chem. Soc. 2008, 130, 11262. (b) Tomson, N. C.; Arnold, J.; Bergman,
R. G. Organometallics 2010, 29, 2926. (c) Tomson, N. C.; Arnold, J.;
Bergman, R. G. Organometallics 2010, 29, 5010. (d) Gianetti, T. L.;
Nocton, G.; Minasian, S. G.; Tomson, N. C.; Kilcoyne, A. L. D.;
Kozimor, S. A.; Shuh, D. K.; Tyliszczak, T.; Bergman, R. G.; Arnold, J. J.
Am. Chem. Soc. 2013, 135, 3224. (e) Gianetti, T. L.; Tomson, N. C.;
Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2011, 133, 14904.
(f) Gianetti, T. L.; Bergman, R. G.; Arnold, J. Chem. Sci. 2014, 5, 2517.
(g) Kriegel, B. M.; Bergman, R. G.; Arnold, J. Dalton Trans. 2014, 43,
10046.
Proposed mechanism for the formation of 8, experimental
procedures, analytical data, crystal data, DFT methods and
results, and NMR data (PDF)
CIF files for 2·XylNC, 3, 5a, 5c, 7, 8, 9, and 10 (ZIP)
AUTHOR INFORMATION
■
Corresponding Authors
(14) (a) Cundari, T. R. Organometallics 1994, 13, 2987. (b) O’Reilly,
M. E.; Ghiviriga, I.; Abboud, K. A.; Veige, A. S. J. Am. Chem. Soc. 2012,
134, 11185.
Notes
(15) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G.
C. J. Chem. Soc., Dalton Trans. 1984, 1349.
The authors declare no competing financial interest.
(16) Nguyen, A. I.; Zarkesh, R. a.; Lacy, D. C.; Thorson, M. K.;
Heyduk, A. F. Chem. Sci. 2011, 2, 166.
(17) (a) Jones, W. D.; Kosar, W. P. Organometallics 1986, 5, 1823.
(b) Millich, F. Chem. Rev. 1972, 72, 101.
(18) Boyarskiy, V. P.; Bokach, N. A.; Luzyanin, K. V.; Kukushkin, V. Y.
Chem. Rev. 2015, 115, 2698.
(19) (a) Fickes, M. G.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc.
1995, 117, 6384. (b) Proulx, G.; Bergman, R. G. J. Am. Chem. Soc. 1995,
117, 6382. (c) Proulx, G.; Bergman, R. G. Organometallics 1996, 15, 684.
(20) (a) Wiese, S.; Aguila, M. J. B.; Kogut, E.; Warren, T. H.
Organometallics 2013, 32, 2300. (b) Laskowski, C. A.; Hillhouse, G. L.
Organometallics 2009, 28, 6114. (c) Saegusa, T.; Ito, Y.; Shimizu, T. J.
Org. Chem. 1970, 35, 3995. (d) Cowley, R. E.; Golder, M. R.; Eckert, N.
A.; Al-Afyouni, M. H.; Holland, P. L. Organometallics 2013, 32, 5289.
(e) Zhang, Z.; Li, Z.; Fu, B.; Zhang, Z. Chem. Commun. 2015, 51, 16312.
(f) Yousif, M.; Tjapkes, D. J.; Lord, R. L.; Groysman, S. Organometallics
2015, 34, 5119.
ACKNOWLEDGMENTS
■
We thank the NSF (Grant CHE-1465188) for financial support,
Prof. C. Camp, L. N. Grant, A. I. Nguyen, T. D. Lohrey, J. A.
Ziegler, Dr. S. Hohloch, and Dr. T. L. Gianetti for helpful
discussions, Dr. K. Durkin and Dr. O. A. Olatunji-Ojo for
assistance with DFT calculations, and Dr. A. G. DiPasquale for
assistance with difficult X-ray structures. We also thank the NIH
(Grant S10-RR027172) for financial support of our X-ray
crystallographic facility.
REFERENCES
■
(1) (a) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem.
Soc. 1988, 110, 8731. (b) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J.
Am. Chem. Soc. 1988, 110, 8729.
(2) Duncan, A. P.; Bergman, R. G. Chem. Rec. 2002, 2, 431.
(3) Hazari, N.; Mountford, P. Acc. Chem. Res. 2005, 38, 839.
(4) (a) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Organometallics
1993, 12, 3705. (b) Lee, S. Y.; Bergman, R. G. Tetrahedron 1995, 51,
4255. (c) Bashall, A.; Collier, P. E.; Gade, L. H.; McPartlin, M.;
Mountford, P.; Pugh, S. M.; Radojevic, S.; Schubart, M.; Scowen, I. J.;
Trosch, D. J. M. Organometallics 2000, 19, 4784. (d) Guiducci, A. E.;
̈
Cowley, A. R.; Skinner, M. E. G.; Mountford, P. J. Chem. Soc. Dalt. Trans.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX