Organic Process Research & Development 2010, 14, 902–904
Efficient Synthesis of Imidazoles from Aldehydes and 1,2-Diketones under
Superheating Conditions by Using a Continuous Flow Microreactor System under
Pressure
Lingjie Kong, Xiaoming Lv, Qi Lin, Xiaofeng Liu, Yaming Zhou, and Yu Jia*
Chemistry Department, Fudan UniVersity, Shanghai, 200433, P.R. China.
Abstract:
route have focused on the usage of catalysts6 and microwave
irradiation.7 However, preparations of some catalysts require
relatively expensive reagents, harsh reaction conditions, and
sometimes tedious workup using toxic reagents or solvents.6 A
microwave reaction system can provide an environment in
which the reaction mixture can be rapidly dielectrically heated
in sealed vessels at temperatures far above the boiling point of
the solvent under pressure. However, it is difficult to scale up
due to the limited penetration depth of microwave irradiation
into absorbing media.8 Consequently, exploring a simpler,
greener, and easy to scale-up method for the efficient synthesis
of 2,4,5-trisubstituted imidazoles is highly desirable.
Recently, more and more attention has been paid to
performing organic synthesis in continuous flow microreactor
systems.9 Microreactors, compared with the conventional batch
reactors, hold a higher surface area-to-volume ratio,9 which leads
to faster heat and mass transfer. In addition, the continuous flow
microreactor system can be easily scaled up due to its number-
ing-up property.10 As a result, through performing reactions in
continuous microflow systems under pressure, we can achieve
a rapid and evenly superheated (above the boiling point of
solvents) environment similar to that provided by a microwave
reactor, while avoiding the scale-up problem of the latter.11
These advantages have been reflected in improvement of the
multicomponent thermal reactions,12,13 for which the heat and
mass transfer are the key factors. Earlier, we successfully
A simple and efficient method for the synthesis of 2,4,5-trisubsti-
tuted imidazoles has been developed by using a continuous flow
microreactor system under pressure; aryl-, alkyl-, and heteroaryl-
substituted imidazoles were obtained in high yields within 2 min
under superheating conditions.
Introduction
Imidazoles and their derivatives, based on their diverse
biological activities, play important roles in the synthesis of
pharmaceuticals and versatile building blocks for natural prod-
ucts.1 2,4,5-Trisubstituted imidazoles, especially, occur in a
number of biologically active structures, such as modulators
of P-glycoprotein and inhibitors of P38 MAP kinase, etc.2 This
structural motif is also found in diverse therapeutic agents, for
example, antibacterial and anti-inflammatory agents.3 Therefore,
the organic synthesis of these imidazole derivatives has a
significant impact on medicinal chemistry. Many routes to
synthesize 2,4,5-trisubstituted imidazoles have been developed.4
The classic synthesis by a one-pot reaction of aldehydes, benzil,
and ammonium acetate, refluxing in acetic acid for many hours,5
proceeds with low yields. Recent modifications on the synthesis
* Author to whom correspondence should be addressed. E-mail:
yujia@fudan.edu.cn. Fax: 86-21-6564-3925. Telephone: 86-21-6564-2261.
(1) (a) Almirant, L.; Polo, L.; Mugnaini, A.; Provinci, E.; Rugarli, P.;
Biancott, A.; Gamba, A.; Murmann, W. J. Med. Chem. 1965, 8, 305–
312. (b) Jin, Z. Nat. Prod. Rep. 2009, 26, 382–445. (c) Biagi, G.;
Costantini, A.; Costantino, L.; Giorgi, I.; Livi, O.; Pecorari, P.; Rinaldi,
M.; Scartoni, V. J. Med. Chem. 1996, 39, 2529–2535.
(6) (a) DasSharma, S.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008,
49, 2216–2220. (b) Khodaei, M. M.; Bahrami, K.; Kavianinia, I.
J. Chin. Chem. Soc. 2007, 54, 829–833. (c) Khosropour, A. R.
Ultrason. Sonochem. 2008, 15, 659–664. (d) Kidwai, M.; Mothsra,
P.; Bansal, V.; Somvanshi, R. K.; Ethayathulla, A. S.; Dey, S.; Singh,
T. P. J. Mol. Catal. A: Chem. 2007, 265, 177–182. (e) Sharma,
G. V. M.; Jyothi, Y.; Lakshmi, P. S. Synth. Commun. 2006, 36, 2991–
3000.
(2) (a) Sarshar, S.; Zhang, C. Z.; Moran, E. J.; Krane, S.; Rodarte, J. C.;
Benbatoul, K. D.; Dixon, R.; Mjalli, A. M. M. Bioorg. Med. Chem.
Lett. 2000, 10, 2599–2601. (b) Kim, K. H. Bioorg. Med. Chem. 2001,
9, 1517–1523. (c) Boehm, J. C.; Smietana, J. M.; Sorenson, M. E.;
Garigipati, R. S.; Gallagher, T. F.; Sheldrake, P. L.; Bradbeer, J.;
Badger, A. M.; Laydon, J. T.; Lee, J. C.; Hillegass, L. M.; Griswold,
D. E.; Breton, J. J.; ChabotFletcher, M. C.; Adams, J. L. J. Med. Chem.
1996, 39, 3929–3937.
(7) (a) Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.;
Zhao, Z. J.; Lindsley, C. W. Org. Lett. 2004, 6, 1453–1456. (b) Xia,
M.; Lu, Y. D. J. Mol. Catal. A: Chem. 2007, 265, 205–208.
(8) Moseley, J. D.; Lenden, P.; Lockwood, M.; Ruda, K.; Sherlock, J. P.;
Thomson, A. D.; Gilday, J. P. Org. Process Res. DeV. 2008, 12, 30–
40.
(3) (a) Khan, M. S.; Siddiqui, S. A.; Siddiqui, M.; Goswami, U.;
Srinivasan, K. V.; Khan, M. I. Chem. Biol. Drug Des. 2008, 72, 197–
204. (b) Barta, T. E.; Stealey, M. A.; Collins, P. W.; Weier, R. M.
Bioorg. Med. Chem. Lett. 1998, 8, 3443–3448. (c) Puratchikody, A.;
Doble, M. Bioorg. Med. Chem. 2007, 15, 1083–1090. (d) Lombardi,
Jg; Wiseman, E. H. J. Med. Chem. 1974, 17, 1182–1188.
(9) (a) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.;
McQuade, D. T. Chem. ReV. 2007, 107, 2300–2318. (b) Watts, P.;
Haswell, S. J. Chem. Soc. ReV. 2005, 34, 235–246. (c) Jahnisch, K.;
Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem., Int. Ed. 2004, 43,
406–446. (d) Geyer, K.; Codee, J. D. C.; Seeberger, P. H. Chem.sEur.
J. 2006, 12, 8434–8442. (e) Fletcher, P. D. I.; Haswell, S. J.; Pombo-
Villar, E.; Warrington, B. H.; Watts, P.; Wong, S. Y. F.; Zhang, X. L.
Tetrahedron 2002, 58, 4735–4757.
(4) (a) Eisch, J. J.; Chan, T. Y.; Gitua, J. N. Eur. J. Org. Chem. 2008,
392–397. (b) Das, B.; Srinivas, Y.; Holla, H.; Krishnaiah, M.;
Narender, R. Chem. Lett. 2007, 36, 1270–1271. (c) Shaabani, A.;
Rahmati, A.; Farhangi, E.; Badri, Z. Catal. Commun. 2007, 8, 1149–
1152. (d) Habersaat, N.; Frohlich, R.; Wurthwein, E. U. Eur. J. Org.
Chem. 2004, 2567–2581. (e) Chou, C. H.; Chu, L. T.; Chiu, S. J.;
Lee, C. F.; She, Y. T. Tetrahedron 2004, 60, 6581–6584.
(10) Fukuyama, T.; Rahman, T.; Sato, M.; Ryu, I. Synlett 2008, 151–163.
(11) Razzaq, T.; Glasnov, T. N.; Kappe, C. O. Eur. J. Org. Chem. 2009,
1321–1325.
(12) (a) Gustafsson, T.; Gilmour, R.; Seeberger, P. H. Chem. Commun.
2008, 3022–3024. (b) Odedra, A.; Geyer, K.; Gustafsson, T.; Gilmour,
R.; Seeberger, P. H. Chem. Commun. 2008, 3025–3027.
(5) Sarshar, S.; Siev, D.; Mjalli, A. M. M. Tetrahedron Lett. 1996, 37,
835–838.
902
•
Vol. 14, No. 4, 2010 / Organic Process Research & Development
10.1021/op100058h 2010 American Chemical Society
Published on Web 06/24/2010