Lanthanide Complexes Coordinated by a Dianionic Bis(amidinate) Ligand
reaction mixture was stirred overnight. The solvent was removed in
Acknowledgments
vacuo, and the solid residue was extracted with toluene (2ϫ
20 mL). The toluene extracts were filtered, and the solvent was re-
moved in vacuo. Recrystallization of the residue from a hexane/thf
This work was supported by the Russian Foundation for Basic Re-
search (Grant No 08-03-00391-a), the Program of the Presidium of
the Russian Academy of Science (RAS), and the RAS Chemistry
and Material Science Division.
mixture afforded pale-yellow crystals of
6 (0.50 g, 61%).
C48H66Cl2LiN4O3Sm (975.4): calcd. C 59.11, H 6.82, Sm 15.42;
found C 58.83, H 6.91, Sm 14.98. 1H NMR (200 MHz, C5D5N,
20 °C): δ = 1.54 [s, 9 H, C(CH3)3], 1.55 (br. s, 12 H, thf β-CH2),
1.66 [s, 9 H, C(CH3)3], 2.16 (s, 12 H, CH3), 3.60 (br. s, 12 H, thf
α-CH2), 6.49–8.56 (m, 12 H, C-H aryl) ppm. 13C{1H} NMR
(50 MHz, C5D5N, 20 °C): δ = 19.0 (CH3), 26.0 (thf, β-CH2) 29.5
[C(CH3)3], 29.8 [C(CH3)3], 40.2 [C(CH3)3], 41.0 [C(CH3)3], 67.9
(thf, α-CH2), 113.4, 116.9, 118.2, 120.6, 121.6, 122.5, 124.6, 125.9,
127.9, 128.8, 129.5, 134.4, 137.3, 138.8, 146.7, 148.0 (s, aryl), 154.5
(s, NCN), 164.9 (s, NCN) ppm. 7Li NMR (78 MHz, C5D5N,
[1] a) F. T. Edelmann, Coord. Chem. Rev. 1994, 137, 403–481; b)
J. Barker, M. Kilner, Coord. Chem. Rev. 1994, 133, 219–300; c)
M. P. Coles, Dalton Trans. 2006, 985–1001; d) P. C. Junk, M. L.
Cole, Chem. Commun. 2007, 1579–1590; e) M. L. Cole, G. B.
Deacon, P. C. Junk, K. Konstas, Chem. Commun. 2005, 1581–
1583; f) . M. L. Cole, P. C. Junk, Chem. Commun. 2005, 2695–
2697.
[2] a) C. Hagen, H. Reddmann, H.-D. Amberger, F. T. Edelmann,
U. Pegelow, G. V. Shalimoff, N. M. Edelstein, J. Organomet.
Chem. 1993, 462, 69–78; b) M. Wedler, F. Knosel, U. Pieper,
D. Stalke, F. T. Edelmann, H.-D. Amberger, Chem. Ber. 1992,
125, 2171–2181; c) A. Recknagel, F. Knosel, H. Gornitzka, M.
Noltemeyer, F. T. Edelmann, U. Behrens, J. Organomet. Chem.
1991, 417, 363–375; d) M. Wedler, M. Noltemeyer, U. Pieper,
D. Schmidt, H.-G. Stalke, F. T. Edelmann, Angew. Chem. Int.
Ed. Engl. 1990, 29, 894–896; e) M. Wedler, A. Recknagel, J. W.
Gilje, M. Notelmeyer, F. T. Edelmann, J. Organomet. Chem.
1992, 426, 295–306; f) F. T. Edelmann, J. Alloys Compd. 1994,
207/208, 182–188. For review see: g) F. T. Edelmann, Angew.
Chem. Int. Ed. Engl. 1995, 34, 2466–2488; h) F. T. Edelmann,
Adv. Organomet. Chem. 2008, 57, 183–352; i) F. T. Edelmann,
Chem. Soc. Rev. 2009, 38, 2253–2268.
[3] a) R. Duchateau, C. T. Van Wee, A. Meetsma, P. T. Van Du-
ijnen, J. H. Teuben, Organometallics 1996, 15, 2279–2290; b)
R. Duchateau, C. T. Van Wee, A. Meetsma, J. H. Teuben, J.
Am. Chem. Soc. 1993, 115, 4931–4932; c) R. Duchateau, C. T.
Van Wee, J. H. Teuben, Organometallics 1996, 15, 2291–2302;
d) S. Bambirra, D. van Leusen, A. Meetsma, B. Hessen, J. H.
Teuben, Chem. Commun. 2003, 522–523; e) S. Bambirra, M. W.
Bouwkamp, A. Meetsma, B. Hessen, J. Am. Chem. Soc. 2004,
126, 9182–9183; f) S. Bambirra, F. Perazzolo, S. J. Boot, T. J. J.
Sciarone, A. Meetsma, B. Hessen, Organometallics 2008, 27,
704–712.
20 °C): δ = 5.4 ppm. IR (Nujol, KBr): ν = 3041 (w), 1638 (s), 1565
˜
(m), 1566 (m), 1257 (m), 1223 (m), 1180 (m), 1113 (w), 1095 (s),
1053 (s), 1050 (m), 1030 (m), 929 (w), 775 (s), 764 (m) cm–1.
Reaction of [1,8-C10H6{NC(tBu)N-2,6-Me2–C6H3}2]Sm(thf)(µ-Cl)2-
Li(thf)2 with LiCH2SiMe3. Synthesis of 7: To a solution of 6 (0.38 g,
0.39 mmol) in toluene (20 mL) was slowly added a solution of Me3-
SiCH2Li (0.04 g, 0.47 mmol) in toluene (10 mL) at 0 °C, and the
reaction mixture was stirred for 1 h. The yellow solution was fil-
tered, the solvent was removed in vacuo, and the solid residue was
recrystallized from a mixture of hexane/dme to give yellow crystals
of 7 (0.12 g, 24%). C72H100LiN7O6Sm (1316.1): calcd. C 65.67, H
7.65, Sm 11.42; found C 65.19, H 7.32, Sm 11.38. 1H NMR
(400 MHz, C6D6, 20 °C): δ = 0.15 [br. s, 18 H, C(CH3)3], 0.42 [br.
s, 9 H, C(CH3)3], 1.24 (br. s, 6 H, CH3), 1.54 (br. s, 12 H, CH3),
3.11 (br. s, 18 H, OCH3, dme), 3.32 (br. s, 12 H, OCH2, dme), 6.17–
7.71 (m, 21 H, C-H aryl) ppm. 13C{1H} NMR (50 MHz, C6D6,
20 °C): δ = –0.2 [C(CH3)3], 1.0 [C(CH3)3], 28.9 (CH3), 29.7 (CH3),
39.1 [C(CH3)3], 40.4 [C(CH3)3], 58.3 (s, OCH3, dme), 71.9 (s,
OCH2, dme), 113.6, 114.7, 115.9, 116.7, 119.2, 120.4, 121.4, 122.1,
122.9, 123.7, 124.1, 124.3, 126.1, 127.0, 127.2, 128.5, 129.7, 133.4,
135.4, 137.4 (s, CH aryl), 157.1, 158.7, 162.2 (NCN) ppm. 7Li
NMR (156 MHz, C D , 20 °C): δ = 6.0 ppm. IR (Nujol, KBr): ν
˜
6
6
[4] J. R. Hagardon, J. Arnold, Organometallics 1996, 15, 984–991.
[5] L. Zhang, M. Nishiura, M. Yuki, Y. Luo, Z. Hou, Angew.
Chem. Int. Ed. 2008, 47, 2642–2645.
= 3289 (w), 3038 (w), 1638 (s), 1608 (m), 1570 (w), 1291 (m), 1262
(m), 1156 (w), 1035 (m), 963 (m), 820 (s) cm–1.
[6] E. A. Bijpost, R. Duchateau, J. H. Teuben, J. Mol. Catal. 1995,
X-ray Crystallography: The data were collected on a SMART
APEX diffractometer (graphite-monochromated, Mo-Kα radiation,
ω- and θ-scan technique, λ = 0.71073 Å) at 100 K. The structures
were solved by direct methods and were refined on F2 by using
the SHELXTL[25] package. All non-hydrogen atoms were refined
anisotropically. The NH hydrogen atoms in 3, 3·(MeCN) and 7
were found from Fourier syntheses of electron density and were
refined isotropically, whereas the other H atoms in 3–7 were placed
in calculated positions and were refined in the riding model. SAD-
ABS[26] was used to perform the area-detector scaling and absorp-
tion corrections. CCDC-753381 (3), -753382 [3·(MeCN)], -753383
(4), -753384 (5), -753385 (6), and -753386 (7) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
95, 121–128.
[7] S. Ge, A. Meetsma, B. Hessen, Organometallics 2008, 27, 3131–
3135.
[8] S. Bambirra, H. Tsurugi, D. van Leusen, B. Hessen, Dalton
Trans. 2006, 1157–1161.
[9] a) W. E. Piers, D. J. H. Emslie, Coord. Chem. Rev. 2002, 233–
234, 131–155; b) A. A. Trifonov, Russ. Chem. Rev. 2007, 76,
1051–1072.
[10] a) S. Bambirra, M. J. R. Brandsma, E. A. C. Brussee, A.
Meetsma, B. Hessen, J. H. Teuben, Organometallics 2000, 19,
3197–3204; b) D. Doyle, Yu. GunЈko, P. B. Hitchkock, M. F.
Lappert, J. Chem. Soc., Dalton Trans. 2000, 4093–4097.
[11] a) G. D. Whitener, J. R. Hagadorn, J. Arnold, J. Chem. Soc.,
Dalton Trans. 1999, 1249–1255; b) J.-F. Li, L.-H. Weng, X.-H.
Wei, D.-S. Liu, J. Chem. Soc., Dalton Trans. 2002, 1401–1405;
c) M. S. Hill, P. B. Hitchcock, S. M. Mansell, Dalton Trans.
2006, 1544–1553; d) S.-D. Bai, J.-P. Guo, D.-S. Liu, Dalton
Trans. 2006, 2244–2250.
[12] a) S. Bambirra, A. Meetsma, B. Hessen, J. H. Teuben, Organo-
metallics 2001, 20, 782–785; b) J. Wang, Y. Yao, Y. Zhang, Q.
Shen, Inorg. Chem. 2009, 48, 744–751; c) J. Wang, F. Xu, T.
Cai, Q. Shen, Org. Lett. 2008, 10, 445–448.
DFT Calculations: The theoretical study of 3 and 3·(MeCN) was
performed at the density functional theory (DFT) level with the
hybrid B3LYP functional by using the DZVP basis set and the
program PC-Gamess (Firefly 71c).[15] The absence of imaginary fre-
quencies shows that the molecules are in a minimum for the poten-
tial energy. The AIMALL[27] program was used to search for criti-
cal points and for the calculation of the hydrogen bond energy.
[13] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885–3896.
[14] F. A. Allen, O. Konnard, D. G. Watson, L. Brammer, G.
Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 1 1987, 1–19.
Eur. J. Inorg. Chem. 2010, 3290–3298
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3297