March 2010
421
UV–vis lmax 308 (e 31200) nm; 1H-NMR (300 MHz) d: 7.61 (1H, s),
7.55—7.51 (2H, m), 7.34 (1H, ddd, Jꢂ7.8, 7.5, 1.8 Hz), 7.26 (1H, td, Jꢂ7.5,
1.2 Hz), 6.85 (1H, dd, Jꢂ15.3, 11.1 Hz), 6.39 (1H, d, Jꢂ11.1 Hz), 6.31 (1H,
d, Jꢂ15.3 Hz), 5.79 (1H, s), 2.27 (3H, s), 2.12 (3H, d, Jꢂ1.2 Hz); 13C-NMR
(75 MHz) d: 172.1, 155.2 (2C), 142.7, 134.5, 133.3, 133.1, 128.8, 126.8,
124.7, 122.8, 121.1, 121.0, 118.0, 111.7, 25.3, 13.9; HR-EI-MS Calcd for
C17H16O3 (Mꢃ); 268.1099. Found 268.1104.
GGGTAAAGTTCACCGAAAGTTCACTCG) or the RXRE from the rat
CRBPII promoter (639/605: GCTGTCACAGGTCACAGGTCACAGGT-
CACAGTTCA) in the pGL3 vector.8,9) The pRL-CMV vector was an inter-
nal control using the Tfx-50 reagent. After transfection, the cells were incu-
bated with retinoids (10ꢀ6 M) for 2 d. Luciferase activity of the cell lysates
was measured with a luciferase assay system (Toyo Ink Co., Ltd.), according
to the manufacturer’s instructions. Transactivation determined from the lu-
ciferase activity was standardized with respect to the luciferase activity of
the same cells measured with the Sea Pansy luciferase assay system as a
control (Toyo Ink Co., Ltd.). Each set of experiments was repeated at least
three times, and the results (meansꢅS.E.M.) are presented in terms of folds
in increase induction compared to the vehicle (ethanol)-treated control,
which is expressed as 1.0.
Transcriptonal Activity Assay of RXRa-GAL4 Human osteosarcoma
MG-63 cells, which are positive for RXR gene expression, were maintained
in Dulbecco’s modified Eagle medium (Gibco BRL) supplemented with 1%
penicillin, 1% streptomycin, and 10% dextran-coated charcoal-treated FCS
(Gibco BRL). The day before transfection, cells were seeded on six-well cul-
ture plates at a density of 2ꢄ105 cells per well so that they were confluent on
day of transfection. The cells were cotransfected with 1.0 mg of a one-hybrid
plasmid (pM vector) containing a human RXR cDNA connected with a
yeast GAL4-DNA binding domain cDNA, 0.5 mg of luciferase reporter plas-
mid (pGVP2 vector) containing GAL4-binding site and a pRL-CMV vector
as an internal control. Each set of experiments was repeated at least three
times using 10ꢀ6 M of the retinoid compound, and the results presented as
meansꢅS.E.M., represented the fold increase in induction.
(2E,4E,6Z)-3-Methyl-7-(2-propylbenzo[b]furan-3-yl)-2,4,6-octa-
trienoic Acid (4b) This was prepared from 8b (244 mg, 0.721 mmol) in
95% yield (213 mg) as yellow crystals. Eluent: hexane/AcOEtꢂ7/3.
mp 129—131 °C (hexane/AcOEt), IR nmax cmꢀ1: 3674, 3523, 3022, 2967,
1
2876, 1679, 1598, UV–vis lmax 299 (e 60900) nm; H-NMR (300 MHz) d:
7.46—7.43 (1H, m), 7.38—7.36 (1H, m), 7.28—7.17 (3H, m), 6.53 (1H, dd,
Jꢂ15.0, 10.8 Hz), 6.40 (1H, dd, Jꢂ10.8, 1.5 Hz), 6.29 (1H, d, Jꢂ15.0 Hz),
5.77 (1H, s), 2.61 (1H, t, Jꢂ7.5 Hz), 2.60 (1H, t, Jꢂ7.5 Hz), 2.20 (3H, s),
2.09 (3H, d, Jꢂ1.5 Hz), 1.75 (2H, sext, Jꢂ7.5 Hz), 0.93 (3H, t, Jꢂ7.5 Hz);
13C-NMR (75 MHz) d: 172.6, 155.2, 154.9, 154.2, 134.9, 134.3, 133.2,
129.5, 128.6, 123.6, 122.5, 119.8, 118.0, 115.6, 110.9, 29.1, 24.8, 21.2,
13.9, 13.8; HR-EI-MS Calcd for C20H22O3 (Mꢃ); 310.1569. Found
310.1568.
(2E,4E,6Z)-3-Methyl-7-(2-(cyclohexen-1-yl)benzo[b]furan-3-yl)-2,4,6-
octatrienoic Acid (4c) This was prepared from 8c (144 mg, 0.382 mmol)
in 89% yield (110 mg) as yellow crystals. Eluent: hexane/AcOEtꢂ7/3.
mp 161—163 °C (hexane/AcOEt), IR nmax cmꢀ1: 3677, 3523, 3022, 2967,
1
2876, 1679, 1598, UV–vis lmax 294 (e 55200) nm; H-NMR (300 MHz) d:
7.44 (1H, d, Jꢂ7.2 Hz), 7.33—7.18 (3H, m), 6.58—6.37 (3H, m), 6.27 (1H,
d, Jꢂ7.2 Hz), 5.75 (1H, s), 2.44—2.34 (2H, m), 2.28—2.21 (2H, m), 2.20
(3H, s), 2.06 (3H, s), 1.76—1.60 (4H, m); 13C-NMR (75 MHz) d: 172.1,
155.4, 153.4, 152.8, 135.7, 134.3, 133.3, 130.1, 129.8, 129.5, 128.5, 124.1,
122.5, 119.7, 117.8, 114.2, 110.8, 25.8, 25.5, 24.5, 22.5, 21.9, 13.9; HR-EI-
MS Calcd for C23H24O3 (Mꢃ); 348.1725. Found 348.1734.
Statistical Analysis Statistical significances were determined using
Dunnett’s test and are expressed as meansꢅS.E.M. The data were compared
to EtOH-treated control cells, and levels of significance were determined as
∗∗∗ pꢁ0.001 or ∗∗ pꢁ0.01.
Acknowledgment This work was supported in part by Grant-in-Aid for
Scientific Research (C) (A.W.) and for Young Scientist (B) (T.O.) from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.
We thank the Science Research Promotion Fund of the Japan Private School
Promotion Foundation for research grants.
(2E,4E,6Z)-3-Methyl-7-(2-phenylbenzo[b]furan-3-yl)-2,4,6-octa-
trienoic Acid (4d) This was prepared from 8d (298 mg, 0.800 mmol) in
92% yield (253 mg) as yellow crystals. Eluent: hexane/AcOEtꢂ7/3.
mp 190—191 °C (hexane/AcOEt), IR nmax cmꢀ1: 3692, 3524, 3028, 1678,
1
1601, UV–vis lmax 301 (e 60100) nm; H-NMR (300 MHz) d: 7.84—7.81
(2H, m), 7.54 (1H, d, Jꢂ7.8 Hz), 7.44—7.30 (6H, m), 6.52—6.49 (2H, m),
6.31—6.24 (1H, m), 5.72 (1H, s), 2.20 (3H, s), 1.91 (3H, s); 13C-NMR
(75 MHz) d: 172.2, 155.1, 154.0, 150.4, 134.9, 134.8, 132.9, 130.6, 130.5,
129.5, 128.7, 128.5, 126.4, 124.8, 122.9, 120.2, 118.2, 116.0, 111.2, 24.1,
13.7; HR-EI-MS Calcd for C23H20O3 (Mꢃ); 344.1412. Found 344.1426.
(2E,4E,6Z)-3-Methyl-7-(2-(2-thienyl)benzo[b]furan-3-yl)-2,4,6-octa-
trienoic Acid (4e) This was prepared from 8e (212 mg, 0.561 mmol) in
92% yield (181 mg) as yellow crystals. Eluent: hexane/AcOEtꢂ7/3.
References
1) Wada A., Matsuura N., Mizuguchi Y., Nakagawa K., Ito M., Okano T.,
Bioorg. Med. Chem., 16, 8471—8481 (2008).
2) Mangelsdorf D. J., Umesono K., Evans R. M., “The Retinoids,” 2nd
ed., ed. by Sporn M. B., Roberts A. B., Goodman D. S., Raven Press,
New York, 1994, pp. 319—350.
3) Germain P., Chambon P., Eichele G., Evans R. M., Lazar M. A., Leid
M., de Lera Á. R., Lotan R., Mangelsdorf D. J., Gronemeyer H., Phar-
macol. Rev., 58, 712—725 (2006).
mp 189—190 °C (hexane/AcOEt), IR nmax cmꢀ1: 3692, 3527, 3024, 1679,
1
1602, UV–vis lmax 306 (e 49800) nm; H-NMR (300 MHz) d: 7.52 (1H, d,
4) Germain P., Chambon P., Eichele G., Evans R. M., Lazar M. A., Leid
M., de Lera Á. R., Lotan R., Mangelsdorf D. J., Gronemeyer H., Phar-
macol. Rev., 58, 760—772 (2006).
Jꢂ8.1 Hz), 7.44 (1H, dd, Jꢂ4.2, 1.2 Hz), 7.39—7.34 (2H, m), 7.31 (1H, dd,
Jꢂ8.1, 1.2 Hz), 7.21 (1H, d, Jꢂ8.1 Hz), 7.07 (1H, dd, Jꢂ5.1, 4.2 Hz),
6.54—6.44 (2H, m), 6.30 (1H, d, Jꢂ14.4 Hz), 5.73 (1H, s), 2.23 (3H, s),
1.95 (3H, s); 13C-NMR (75 MHz) d: 172.2, 155.2, 153.8, 146.3, 135.2,
134.0, 132.8, 132.1, 131.4, 129.3, 127.6, 126.6, 125.9, 124.8, 123.1, 120.0,
118.2, 114.9, 111.1, 23.7, 13.8; HR-EI-MS Calcd for C21H18O3S (Mꢃ);
350.0977. Found 350.0990.
(2E,4E,6Z)-3-Methyl-7-(2-(3-thienyl)benzo[b]furan-3-yl)-2,4,6-octa-
trienoic Acid (4f) This was prepared from 8f (303 mg, 0.800 mmol) in
75% yield (210 mg) as yellow crystals. Eluent: hexane/AcOEtꢂ7/3.
mp 190—192 °C (hexane/AcOEt), IR nmax cmꢀ1: 3692, 3524, 3026, 1678,
1600, UV–vis lmax 299 (e 45000) nm; 1H-NMR (300 MHz) d: 7.71 (1H, dd,
Jꢂ3.0, 1.2 Hz), 7.52 (1H, d, Jꢂ8.1 Hz), 7.48 (1H, dd, Jꢂ8.1, 1.2 Hz),
7.40—7.20 (4H, m), 6.51—6.44 (2H, m), 6.32—6.25 (1H, m), 5.73 (1H, s),
2.23 (3H, s), 1.92 (3H, s); 13C-NMR (75 MHz) d: 171.8, 155.2, 153.8,
147.5, 135.0, 134.7, 132.9, 131.6, 130.7, 129.3, 126.1, 125.8, 124.6, 123.0,
120.0, 118.1, 114.9, 111.1, 24.1, 13.8; HR-EI-MS Calcd for C21H18O3S
(Mꢃ); 350.0977. Found 350.1000.
Transcriptional Activity Assay of RARE and RXRE Human os-
teosarcoma MG-63 cells, which are positive for RXR gene expression, were
maintained in Dulbecco’s modified Eagle medium (Gibco BRL) supple-
mented with 1% penicillin, 1% streptomycin, and 10% dextran-coated char-
coal-treated FCS (Gibco BRL). The day before transfection, cells were
seeded on six-well culture plates at a density of 2ꢄ105 cells per well so
that they were confluent on day of transfection. The retinoid-responsive
luciferase reporter constructs human RARb-RARE3-SV40-Luc and rat
CRBPII-RXRE-SV40-Luc were generated by cloning three copies of the
retinoic acid response element (RARE) from the RARb promoter (59/33:
5) Morishita K., Yakushiji N., Ohsawa F., Takamatsu K., Matsuura N.,
Makishima M., Kawahata M., Yamaguchi K., Tai A., Sasaki K.,
Kakuta H., Bioorg. Med. Chem. Lett., 19, 1001—1003 (2009).
6) Charton J., Deprez-Poulain R., Hennuyer N., Tailleux A., Staels B.,
Deprez B., Bioorg. Med. Chem. Lett., 19, 489—492 (2009).
7) García J., Khanwalkar H., Pereira R., Erb C., Voegel J. J., Collete P.,
Mauvais P., Bourguet W., Gronemeyer H., de Lera Á. R., Chem-
BioChem, 10, 1252—1259 (2009).
8) Álvarez S., Pazos-Randulfe Y., Khanwalkar H., Germain P., Álvarez
R., Gronemeyer H., de Lera Á. R., Bioorg. Med. Chem., 16, 9719—
9728 (2008).
9) Sakaki J., Konishi K., Kishida M., Gunji H., Kanazawa T., Uchiyama
H., Fukaya H., Mitani H., Kimura M., Bioorg. Med. Chem. Lett., 17,
4808—4811 (2007).
10) Sun W., Desai S., Piao H., Carroll P., Canney D. J., Heterocycles, 71,
557—567 (2007).
11) Walker J. R., Alshafie G., Nieves N., Ahrens J., Clagett-Dame M.,
Abou-Issa H., Curley R. W. Jr., Bioorg. Med. Chem., 14, 3038—3048
(2006).
12) Ikegami S., Iimori T., Sudo M., Kitsukawa M., Foroumadi A., Yone-
mura T., Takahashi H., Kizaki K., Ishii H., Bioorg. Med. Chem., 14,
5099—5109 (2006).
13) Wada A., Wang F., Ito M., Chem. Pharm. Bull., 56, 112—114 (2007).
14) Wada A., Ieki Y., Nakamura S., Ito M., Synthesis, 2005, 1581—1588
(2005).