Inorganic Chemistry
Article
provided by a 450 W xenon light source (Oriel, USA). A Schott K113
(4) Yoshida, Y.; Muroi, K.; Otsuka, A.; Saito, G.; Takahashi, M.;
Yoko, T. Inorg. Chem. 2004, 43, 1458.
(5) Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J.-E.;
Tempax sunlight filter (Prazisions Glas & Optik GmbH, Germany)
̈
was used to correct the spectral output of the lamp in the region 350−
750 nm. Current−voltage characteristics (in the dark and under
illumination) were obtained by applying a forward potential bias and
measuring resulting current with a Keithley 2400 digital sourcemeter
(Keithley, USA). A metal mask was used to precisely define the
irradiated surface area (0.159 cm2). Quantum efficiencies of the cells
were measured by a similar data acquisition system. A Gemini-180
double monochromator (Jobin Yvon Ltd., UK) was used to separate
and focus the probing wavelength from the white light being shone by
a 300 W xenon lamp (ILC Technology, USA). Measurements were
conducted within the UV−vis range (350−850 nm, with a 10 nm
interval).
Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E, V.; Zakeeruddin,
S. M.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 6850.
̈
(6) Wang, P.; Zakeeruddin, S. M.; Gratzel, M.; Kantlehner, W.;
̈
Mezger, J.; Stoyanov, E. V.; Scherr, O. Appl. Phys. A: Mater. Sci. Process.
2004, 79, 73.
(7) Welz-Biermann, U.; Ignatyev, N.; Bernhardt, E.; Finze, M.;
Willner, H. Merck Gmbh, Dermstadt, Germany; Patent WO 2004/
072089 A1, 2004.
(8) Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Gratzel, M. J.
̈
Am. Chem. Soc. 2006, 128, 7732.
(9) (a) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H.
D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156.
(b) McEwen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L. J.
Electrochem. Soc. 1999, 146, 1687.
(10) Tong, J.; Liu, Q.-S.; Kong, Y.-X.; Fang, D.-W.; Welz-Biermann,
U.; Yang, J.-Z. J. Chem. Eng. Data 2010, 55, 3693.
Transient Photovoltage Decay Measurements. Transient
decays were measured under white light bias with superimposed red
light perturbation pulses (both light sources were LEDs). The voltage
dynamics were recorded by using a Keithley 2400 source meter.
Varying the intensity of white light bias allowed the recombination rate
constant (and thus apparent electron lifetime) to be estimated at
different open-circuit potentials by controlling the concentration of the
free charges in TiO2. Red perturbation pulses were adjusted to a very
low level in order to maintain single-exponential voltage decay.
Electrochemical Measurements. Cyclic voltammetry and elec-
trochemical impedance spectroscopy were used to determine diffusion
(11) Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.;
Graetzel, M. Angew. Chem., Int. Ed. 2008, 47, 1923.
(12) Bai, Y.; Cao, Y.; Zhang, J.; Wang, M.; Li, R.; Wang, P.;
Zakeeruddin, S. M.; Graetzel, M. Nat. Mater. 2008, 7, 626.
(13) Kuang, D.; Klein, C.; Zhang, Z.; Ito, S.; Moser, J.-E.; S.
Zakeeruddin, S. M.; Graetzel, M. Small 2007, 3, 2094.
(14) Lei, Z.; Chen, B.; Li, C. Chem. Eng. Sci. 2007, 62, 3940.
(15) Yan, P. F.; Yang, M.; Liu, X.-M.; Wang, C.; Tan, Z.-C.; Welz-
Biermann, U. J. Chem. Thermodyn. 2010, 42, 817.
(16) (a) Wilkes, J. S.; Zaworotko, M. J. Chem. Commum. 1992, 965.
(b) Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; de Souza, R. F.;
Dupont, J. Polyhedron 1996, 15, 1217.
−
coefficients of I3 of the electrolytes. The setup consisted of a
Potentiostat/Galvanostat Model 273A (EG&G Princeton Applied
Research, USA) and a 1250 Frequency Response Analyzer (Solartron
Schlumberger, UK) controlled by CorrWare software (v. 3.2).
Symmetric cells were employed with a 20-μm-thick layer of electrolyte
encapsulated between two identical electrodes (FTO covered
conductive glass TEC15 twice platinized with a solution of H2PtCl6
in n-propanol, at 450 °C for 15 min). A Surlyn ring, which was used to
seal the cell, determined the thickness of the electrolyte layer.
(17) Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram,
K.; Graetzel, M. Inorg. Chem. 1996, 35, 1168.
(18) Mazille, F.; Fei, Z.; Kuang, D.; Zhao, D.; Zakeeruddin, S. M.;
Gratzel, M.; Dyson, P. J. Inorg. Chem. 2006, 45, 1585.
(19) Fei, Z.; Kuang, D.; Zhao, D.; Klein, C.; Ang, W. H.;
̈
ASSOCIATED CONTENT
■
S
* Supporting Information
Crystallographic data in CIF format. This material is available
Zakeeruddin, S. M.; Gratzel, M.; Dyson, P. J. Inorg. Chem. 2006, 45,
̈
1047.
(20) Brand, H.; Liebman, J. F.; Schulz, A.; Mayer, P.; Villinger, A.
Eur. J. Inorg. Chem. 2006, 4294.
(21) Enemark, H.; Holm, R. H. Inorg. Chem. 1964, 3, 1516.
(22) Miller, F. A.; Baer, W. K. Spectrochim. 1963, 19, 73.
(23) Andersen, P.; Klewe, B.; Thom, E. Acta Chem. Scand. 1967, 21,
1530.
AUTHOR INFORMATION
Corresponding Author
■
(24) Witt, J.; Britton, D. Acta Crystallogr. 1971, B27, 1835.
ACKNOWLEDGMENTS
■
(25) Kuppers, T.; Bernhardt, E.; Willner, H.; Rohm, H. W.;
̈
We thank EPFL and Swiss National Science Foundation for
financial support. D.-R.Z. thanks the National Natural Science
Foundation of China (No. 21171093) for financial support.
M.G. thanks the Swiss National Science Foundation for the
financial support under the Indo Swiss Joint Research
Programme (ISJRP) grant. We thank Lonza AG for providing
Na[C(CN)3] and Dr. Emil F. Aust, Merck KGaA, Germany for
proving us with a sample of K[B(CN)4].We also thank Mr.
Pascal Comte for providing us the mesoporous TiO2 films.
Kockerling, M. Inorg. Chem. 2005, 44, 1015.
̈
(26) Neukirch, M.; Tragl, S.; Meyera, H.-J.; Kuppers, T.; Willner, H.
Z. Anorg. Allg. Chem. 2006, 632, 939.
̈
(27) Nitschke, C.; Kockerling, M. Z. Anorg. Allg. Chem. 2009, 635,
̈
503.
(28) Bernhardt, E.; Henkel, G.; Willner, H. Z. Anorg. Allg. Chem.
2000, 626, 560.
(29) Flemming, A.; Hoffmann, M.; Kockerling, M. Z. Anorg. Allg.
̈
Chem. 2010, 636, 562.
(30) Bessler, E.; Goubeau, J. Z. Anorg. Allg. Chem. 1967, 352, 67.
(31) Williams, D.; Pleune, B.; Kouvetakis, J.; Williams, M. D.;
Andersen, R. A. J. Am. Chem. Soc. 2000, 122, 7735.
REFERENCES
■
(32) Kuppers, T.; Kockerling, M.; Willner, H. Z. Anorg. Allg. Chem.
̈
̈
(1) (a) Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68, 351.
(b) Welton, T. Chem. Rev. 1999, 99, 2071. (c) Wasserscheid, P.; Keim,
W. Angew. Chem., Int. Ed. 2000, 39, 3772.
(2) (a) Dyson, P. J. Appl. Organomet. Chem. 2002, 16, 495.
(b) Dupont, J.; De. Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102,
3667. (c) Ciappe, C.; Pieraccini, D. J. Phys. Org. Chem. 2005, 18, 275.
(d) Fei, Z.; Geldbach, T. J.; Zhao, D.; Dyson, P. J. Chem.Eur. J.
2006, 12, 2122. (e) Migowski, P.; Dupont, J. Chem.Eur. J. 2007, 13,
32.
2007, 633, 280.
(33) Koppe, K.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J.
Inorg. Chem. 2008, 47, 3205.
(34) Choudhury, A. R.; Winterton, N.; Steiner, A.; Cooper, A. I.;
Johnson, K. A. J. Am. Chem. Soc. 2005, 127, 16792.
(35) Choudhury, A. R.; Winterton, N.; Steiner, A.; Cooper, A. I.;
Johnson, K. A. CrystEngComm 2006, 8, 742.
(36) Hipps, K. W.; Aplin, A. T. J. Phys. Chem. 1985, 89, 5459.
(37) Zhang, M.; Zhang, J.; Bai, Y.; Su, M.; Wang, P. Phys. Chem.
Chem. Phys. 2011, 13, 3788.
(3) Xue, H.; Verma, R.; Shreeve, J. M. J. Fluorine Chem. 2006, 127,
159.
11566
dx.doi.org/10.1021/ic201513m|Inorg. Chem. 2011, 50, 11561−11567