C O M M U N I C A T I O N S
(7) Chemler has previously described enantioselective Cu-catalyzed intramo-
lecular carboamination reactions of N-(arylsulfonyl)-N-(pent-4-enyl)amines
that generate substituted tetrahydro-1H-benzo[e]pyrrolo[1,2-b][1,2]thia-
zinedioxides. These products can be transformed to enantiomerically
enriched 2-(arylmethyl)pyrrolidines through reductive desulfonylation. See:
(a) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948. (b)
Zeng, W.; Chemler, S. R. J. Org. Chem. 2008, 73, 6045.
(8) For enantioselective intramolecular alkene carboamination reactions that
proceed via Pd-catalyzed oxidative tandem cyclization of N-(2-allylphe-
nyl)acrylamide derivatives, see: (a) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu,
N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130. (b) He, W.; Yip,
K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009, 11, 5626.
(9) For oxidative Pd-catalyzed aminocarbonylation reactions of alkenylureas,
see: Tsujihara, T.; Shinohara, T.; Takenaka, K.; Takizawa, S.; Onitsuka,
K.; Hatanaka, M.; Sasai, H. J. Org. Chem. 2009, 74, 9274.
(10) A complete table of results from our ligand screening experiments is
provided in the Supporting Information.
(e.g., 5-7) may be due to dissociation of one arm of the chelate to
provide a four-coordinate complex analogous to 13 prior to amino-
palladation. This would place much of the chiral ligand steric bulk at
a large distance away from the reactive site, which could diminish
asymmetric induction.21 In contrast, the monodentate phosphoramidite
ligands should provide relatively facile access to reactive L1 complexes.
The high selectivities obtained with these ligands may arise from the
steric bulk and chiral elements on both the amine group and the diol
portion, which appear to be projected around the metal center to a
much greater degree than the substituents on ligands such as 5-7 when
bound through a single P-atom.22
In conclusion, we have developed enantioselective Pd-catalyzed
alkene carboamination reactions that afford 2-(arylmethyl)- or 2-(alk-
enylmethyl)pyrrolidines in good yields and enantioselectivities. These
transformations provide a new means for the asymmetric construction
of this important class of nitrogen heterocycles and a new route to
enantiomerically enriched phenanthroindolizidine alkaloids such as
tylophorine. Further studies on the design of more efficient chiral
catalysts for these transformations are currently underway.
(11) (a) van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde,
E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.;
Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Hubertus, H. J. W.; de Vries,
J. G. AdV. Synth. Catal. 2003, 345, 308. (b) Imbos, R.; Minnaard, A. J.;
Feringa, B. L. Dalton. Trans. 2003, 2017–2023. (c) Trost, B. M.; Silverman,
S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398. (d) Yasui, Y.;
Kamisaki, H.; Takemoto, Y. Org. Lett. 2008, 10, 3303. (e) Reddy, V. J.;
Douglas, C. J. Org. Lett. 2010, 12, 952.
(12) Guo, X.-X.; Xie, J.-H.; Hou, G.-H.; Shi, W.-J.; Wang, L.-X.; Zhou, Q.-L.
Tetrahedron: Asymmetry 2004, 15, 2231.
(13) Efforts to employ weak bases such as Cs2CO3 or K3PO4 led to low reactivity.
(14) Secondary tert-butyl carbamates have been shown to undergo elimination
reactions to afford reactive isocyanates when heated in the presence of
NaOtBu. Aqueous workup affords the corresponding primary amines. See:
Tom, N. J.; Simon, W. M.; Frost, H. N.; Ewing, M. Tetrahedron Lett. 2004,
45, 905.
Acknowledgment. The authors acknowledge the NIH-NIGMS
(GM071650) for financial support of this work. Additional unre-
stricted funding was provided by GlaxoSmithKline, Amgen, and
Eli Lilly. The authors thank Dr. Qifei Yang for conducting
preliminary experiments in this area.
(15) When a solution of 3a and NaOtBu (1:1) in toluene-d8 was heated to 90
°C for 3 h, ca. 35% decomposition to the corresponding isocyanate was
observed. This isocyanate likely is converted to the volatile pent-4-
enylamine upon aqueous workup.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
(16) The absolute stereochemistry of 4a-t was assigned based on analogy to 12.
(17) (a) Zeng, W.; Chemler, S. R. Curr. Bioact. Cmpds. 2009, 5, 2. (b) Li, Z.;
Jin, Z.; Huang, R. Synthesis 2001, 2365.
(18) A recent syntheses of racemic tylophorine was reported that employed a
Pd-catalyzed alkene carboamination reaction between 3a and 11 to generate
the heterocyclic ring. See: Rossiter, L. M.; Slater, M. L.; Giessert, R. E.;
Sakwa, S. A.; Herr, R. J. J. Org. Chem. 2009, 74, 9554.
References
(19) For selected recent syntheses, see: (a) Fu¨rstner, A.; Kennedy, J. W. J.
Chem.sEur. J. 2006, 12, 7398. (b) McIver, A.; Young, D. D.; Dieters, A.
Chem. Commun. 2008, 4750. (c) Wang, Z.; Li, Z.; Wang, K.; Wang, Q.
Eur. J. Org. Chem. 2010, 292, and references cited therein.
(1) Reviews: (a) Wolfe, J. P. Synlett 2008, 2913. (b) Wolfe, J. P. Eur. J. Org.
Chem. 2007, 571. (c) Minatti, A.; Mun˜iz, K. Chem. Soc. ReV. 2007, 36,
1142.
(2) (a) Ney, J. E.; Wolfe, J. P. Angew. Chem., Int. Ed. 2004, 43, 3605. (b)
Bertrand, M. B.; Wolfe, J. P. Tetrahedron 2005, 61, 6447. (c) Ney, J. E.;
Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644. (d) Bertrand, M. B.; Wolfe,
J. P. Org. Lett. 2006, 8, 2353. (e) Bertrand, M. B.; Neukom, J. D.; Wolfe,
J. P. J. Org. Chem. 2008, 73, 8851. (f) Hayashi, S.; Yorimitsu, H.; Oshima,
K. Angew. Chem., Int. Ed. 2009, 48, 7224. (g) Bagnoli, L.; Cacchi, S.;
Fabrizi, G.; Goggiamani, A.; Scarponi, C.; Tiecco, M. J. Org. Chem. 2010,
75, 2134.
(3) (a) Mun˜iz, K.; Ho¨velmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130,
763. (b) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
(4) (a) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328. (b) Balazs, A.;
Hetenyi, A.; Szakonyi, Z.; Sillanpa¨a¨, R.; Fu¨lo¨p, F. Chem.sEur. J. 2009,
15, 7376.
(5) (a) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129,
11688. (b) Xu, L.; Shi, Y. J. Org. Chem. 2008, 73, 749.
(20) Studies on the reactivity of (dppf)Pd(Ar)[N(Ar)(CH
2)3CH)CH2) complexes
indicate that the rates of aminopalladation and reductive elimination are
comparable and that aminopalladation is not reversible under the conditions
of the stoichiometric reactions. See: Neukom, J. D.; Perch, N. S.; Wolfe,
J. P. J. Am. Chem. Soc. 2010, 132, 6276.
(21) A related hypothesis has previously been invoked to account for the effect
of reaction conditions on asymmetric induction in enantioselective intramo-
lecular Heck reactions. See: Dounay, A. B.; Overman, L. E. Chem. ReV.
2003, 103, 2945, and references cited therein.
(22) No X-ray structural data for palladium complexes of 10 has been reported
in the literature. However, this is evident in X-ray data reported for an
allylpalladium complex bearing a single chiral phosphoramidite ligand
derived from BINOL and bis(1-phenylethyl)amine. See: Mikhel, I. S.;
Ru¨egger, H.; Butti, P.; Camponovo, F.; Huber, D.; Mezzetti, A. Organo-
metallics 2008, 27, 2937.
(6) Cole, D. C.; Lennox, W. J.; Lombardi, S.; Ellingboe, J. W.; Bernotas, R. C.;
Tawa, G. J.; Mazandarani, H.; Smith, D. L.; Zhang, G.; Coupet, J.;
Schechter, L. E. J. Med. Chem. 2005, 48, 353.
JA106989H
9
J. AM. CHEM. SOC. VOL. 132, NO. 35, 2010 12159