Job/Unit: O50208
/KAP1
Date: 14-04-15 12:59:34
Pages: 9
A. Castillo, L. Silva, D. Briones, J. F. Quílez del Moral, A. F. Barrero
FULL PAPER
Komiyama, Y. Takahashi, H. B. Woodruff, J. Antibiot. 2010,
63, 579; d) Y. Kinoshita, T. Kitahara, Tetrahedron Lett. 1997,
38, 4993–4996.
different natural products has been shown with the synthe-
sis of siccanochromene F (2, four steps, 18.9% yield; 23.7%
brsm), metachromins U (3, five steps, 22.0%) and V (4, six
steps, 17.3% yield), and bicyclic squalene derivative (5, four
steps, 28.2% yield) as well as the formal synthesis of
ambrein (6; intermediate 24: two steps, 67% yield; interme-
diate 26: two steps, 61.6% yield), siccanin (7; intermediate
15: four steps, 12.3% yield, 15.4% brsm), and phenazino-
mycin (8; intermediate 20: two steps, 52.5% yield). Other
elements of interest of this work include the optimization
and mechanistic proposal for the organocatalyzed Kabbe
reaction, the TiIII-catalyzed homocoupling of allylic alcohol
19, and the use of a second natural renewable source and
enantiopure starting material in addition to 1 for the formal
synthesis of ambrein.
[8] a) K. J. Ishibashi, J. Antibiot., Ser. A 1962, 15, 161; b) M. G.
Belloti, L. Riviera, Chimioterapia 1985, 4, 431; c) N. Kitano,
F. Kondo, K. Kusano, K. Ishibashi, US 3974291, 1976; d) M.
Matsuki, H. Hanatsu, T. Watanabe, A. Ogasawara, T. Mikami,
T. Matsumoto, Biol. Pharm. Bull. 2006, 29, 919; e) T. Mogi, T.
Kawakami, H. Arai, Y. Igarashi, K. Matsushita, M. Mori, K.
Shiomi, S. Omura, S. Harada, K. Kita, J. Biochem. 2009; 146,
383; f) M. Kato, K. Heima, Y. Matsuma, A. Yoshikoshi, J. Am.
Chem. Soc. 1981, 103, 2434; g) B. M. Trost, F. J. Fleitz, W. J.
Watkins, J. Am. Chem. Soc. 1996, 118, 5146; h) B. M. Trost,
H. C. Shen, J. P. Surivet, Angew. Chem. Int. Ed. 2003, 42, 3943;
Angew. Chem. 2003, 115, 4073; i) B. M. Trost, H. C. Shen, J. P.
Surivet, J. Am. Chem. Soc. 2004, 126, 12565.
[9] a) L. Ruzicˇka, C. F. Seidel, M. Pfeiffer, Helv. Chim. Acta 1948,
ˇ
31, 827; b) A. F. Barrero, J. F. Sanchez, F. G. Cuenca, Phyto-
chemistry 1988, 27, 3676.
[10] a) H. J. Kabbe, Synthesis 1978, 886; b) H. J. Kabbe, A. Widdig,
Angew. Chem. Int. Ed. Engl. 1982, 21, 247; Angew. Chem. 1982,
94, 254.
[11] a) For reviews, see: C. Grondal, M. Jeanty, D. Enders, Nature
Chemistry 2010, 2, 167; b) D. W. C. MacMillan, Nature 2008,
455, 304.
Experimental Section
Full experimental data as well as characterization and NMR spec-
tra of new compounds are given in the Supporting Information.
[12] a) D. Sánchez, D. Bastida, J. Burés, C. Isart, O. Pineda, J. Vilar-
rasa, Org. Lett. 2012, 14, 536; b) although the rates of enamine
formation of acetophenone and alkyl ketones are similar ac-
cording to ref.[12a], the fact that 10 is electronically different to
acetophenone could account for the observed selective enamine
formation.
Acknowledgments
Financial support for this work was provided by the Junta de And-
alucia (grant number P08-FQM-3596) and Ministerio de Economía
y Competitividad (MEC) (grant number CTQ-2010-16818).
[13] S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev.
2007, 107, 541.
[14] a) C. Palomo, A. Mielgo, Angew. Chem. Int. Ed. 2006, 45, 7876;
Angew. Chem. 2006, 118, 8042; b) K. L. Jensen, G. Dickmeiss,
H. Jiang, L. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2012,
45, 248; c) W. Wang, H. Li, J. Wang, L. Zu, J. Am. Chem. Soc.
2006, 128, 10354 and references cited therein.
[15] a) L.-W. Xu, Y. Lu, Org. Biomol. Chem. 2008, 6, 2047; b) L.-
W. Xu, J. Luo, Y. Lu, Chem. Commun. 2009, 1807; c) Z. Jiang,
Z. Liang, X. Wua, Y. Lu, Chem. Commun. 2006, 2801.
[16] a) G. A. Crispino, K. B. Sharpless, Tetrahedron Lett. 1992, 33,
4273; b) E. J. Corey, M. C. Noe, S. Lin, Tetrahedron Lett. 1995,
36, 8741; c) E. J. Corey, J. Zhang, Org. Lett. 2001, 3, 3211.
[17] T. H. Simpson, J. Org. Chem. 1963, 28, 2107.
[18] CCDC-980367 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. For additional X-ray
data, see Supporting Information.
[19] M. Lang, W. Stieglich, Synthesis 2005, 5, 1019.
[20] T. Yoshimura, H. Kisyuku, T. Kamei, K. Takabatake, M.
Shindo, K. Shishido, ARKIVOC (Gainesville, FL, U.S.) 2003,
247.
[21] a) S. Serra, A. A. Cominettia, V. Lissoni, Nat. Prod. Commun.
2014, 9, 303.
[22] A. F. Barrero, M. M. Herrador, J. F. Quílez del Moral, P. Arte-
aga, J. Arteaga, M. Piedra, E. M. Sánchez, Org. Lett. 2005, 7,
2301.
[23] M. Schalk, L. Pastore, M. A. Mirata, S. Khim, M. Schouwey,
F. Deguerry, V. Pineda, L. Rocci, L. Daviet, J. Am. Chem. Soc.
2012, 134, 18900.
[1] a) S. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMil-
lan, Nature 2011, 475, 183; b) J. Wang, S.-G. Chen, B.-F. Sun,
G.-Q. Lin, Y.-J. Shang, Chem. Eur. J. 2013, 19, 2539; c) H. Li,
X. Wang, B. Hong, X. Lei, J. Org. Chem. 2013, 78; d) E. E.
Anagnostaki, A. L. Zografos, Chem. Soc. Rev. 2012, 41, 5613;
e) W. R. J. D. Galloway, A. Isidro-Llobet, D. R. Spring, Nature
Commun. 2010, 1, 80; f) G. Valot, J. García, V. Duplan, C.
Serba, S. Barluenga, N. Wissinger, Angew. Chem. Int. Ed. 2012,
51, 5391–5394; Angew. Chem. 2012, 124, 5487–5490; g) K. Foo,
I. Ussi, D. C. G. Götz, E. W. Werner, D. Holte, P. Baran, An-
gew. Chem. Int. Ed. 2012, 51, 1–6; Angew. Chem. 2012, 124, 1.
[2] a) J.-T. de Pascual, E. Caballero, C. Caballero, M. Medarde,
A. F. Barrero, M. Grande, Tetrahedron 1982, 38, 1837; b) A. F.
Barrero, M. M. Herrador de Pino, P. Arteaga, H. J. Rodrig-
uez Dieguez, WO 2010103145 A1, 2009; c) A. F. Barrero,
M. M. Herrador, P. Arteaga, A. Castillo, A. F. Arteaga, Nat.
Prod. Commun. 2011, 6, 1.
[3] K. Hirai, K. T. Suzuki, S. Nozoe, Tetrahedron 1971, 27, 6057.
[4] S. P. B. Ovenden, J. L. Nielson, C. H. Liptrot, R. H. Willis,
D. M. Tapiolas, A. D. Wright, C. A. Motti, J. Nat. Prod. 2011,
74, 1335.
[5] A. Behrens, P. Schaeffer, S. Bernasconi, P. Albrecht, Geochim.
Cosmochim. Acta 2000, 64, 3327.
[6] a) G. Ohloff, in: Fragrance Chemistry (Ed.: E. T. Theimer), Ac-
ademic Press, New York, 1982, p. 535; b) M. Raza, M. S. Alo-
rainy, A. A. Alghashm, Food Chem. Toxicol. 2007, 45, 1614; c)
S. A. Taha, Med. Sci. Res. 1994, 22, 97; d) K. Mori, H. Ta-
mura, Liebigs Ann. Chem. 1990, 361; e) H. Tanimoto, T. Orit-
ani, Tetrahedron 1997, 53, 3527; f) N. Fujiwara, M. Kinoshita,
H. Akita, Tetrahedron: Asymmetry 2006, 17, 3037; g) D. Ueda,
T. Hoshino, T. Sato, J. Am. Chem. Soc. 2013, 135, 18335.
[7] a) S. Funaama, S. Eda, K. Komiyama, S. Omura, T. Tokunaga,
Tetrahedron Lett. 1989, 30, 3151; b) S. Omura, S. Eda, S. Fu-
nayama, K. Komiyama, Y. Takahashi, H. B. Woodruff, J. Anti-
biot. 1989, 42, 1037; c) S. Omura, S. Eda, S. Funayama, K.
[24] A. F. Barrero, E. A. Manzaneda, J. Altarejos, S. Salido, J. M.
Ramos, M. S. Simmonds, W. M. Blaney, Tetrahedron 1995, 51,
7435.
[25] E. Negishi, A. O. King, J. M. Tour, Org. Synth. 1986, 64, 44–
49.
Received: February 12, 2015
Published Online:
8
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0