Table 1 Photophysical properties of the complexes
ex/nm em/nm /ms
sphere hydration numbers (q) for both lanthanide ions
are again consistent with binding in DOTA–monoamide
pockets,13 with the value for Tb3+ being slightly larger; an
effect of the lanthanide contraction.
l
l
t
H2O
t
/ms
q
D2O
Ybꢀ8
337
337
337
337
260
980
980
980
980
545
1.51
1.50
1.45
1.37
5.03
6.35
8.15
6.15
0.4
0.4
0.5
0.5
0.6
Ybꢀ9
In conclusion, orthogonal protection of binding sites that
form kinetically stable lanthanide complexes allows access to
heterometallic arrays that contain different lanthanides in
otherwise equivalent binding sites. This study also illustrates
how care is needed when considering suitable protecting
groups (and indeed the order of synthetic steps) for reactions
involving DOTA–monoamide derivatives.
H3Ybꢀ1
TbYbꢀ1
1610
2270
This is borne out by the luminescence properties of the
complexes, which are summarised in Table 1. The table also
shows calculated values of q, the number of bound solvent
oscillators, using the equation
Notes and references
z In water, ATb = 5 ms, BTb = 0.06 msꢂ1, AYb = 1.0 ms and
q = ALn(1/tH ꢂ 1/tD ꢂ BLn
)
(1)
BYb = 0.1 msꢂ1
.
where tH and tD are the lifetimes observed in H2O and D2O,
respectively, and A and B are constants for a given lanthanide
15
1 D. Parker, Chem. Soc. Rev., 2004, 33, 156; D. Parker,
R. S. Dickins, H. Puschmann, C. Crossland and J. A.
K. Howard, Chem. Rev., 2002, 102, 1977; J.-C. G. Bunzli, Acc.
¨
Chem. Res., 2006, 39, 53; J.-C. G. Bunzli and C. Piguet, Chem. Soc.
¨
Rev., 2005, 34, 1048.
and solvent system.z
From Table 1 it can be seen that calculated values of q for
both complexes are identical within experimental error, and
are consistent with the binding of a small lanthanide ion in a
DOTA–monoamide binding site. The complexes were clearly
differentiated by MALDI mass spectroscopy; molecular ions
corresponding well to calculated isotopic distributions were
observed for both complexes (see ESIw).
Reaction of Ybꢀ8 with sodium hydroxide yielded H3Ybꢀ1.
However, the NMR spectrum of the crude product indicated
that partial hydrolysis (o5%) of the ligand skeleton had also
occurred to yield [YbꢀDOTA]ꢂ as a minor product, presum-
ably following hydrolysis of the amide bond in Ybꢀ8 or H3Ybꢀ1
(mediated by the Lewis acidity of the Yb3+ ion). By contrast,
cleavage of the tert-butyl esters in Ybꢀ9 proceeded cleanly, and
H3Ybꢀ1 was isolated pure. This has clear implications for the
choice of strategy when deprotecting orthogonally protected
systems for lanthanide complexation, and also restricts
the possible routes that can be used to functionalise
DOTA–monoamide complexes further.
2 M. P. Lowe, Aust. J. Chem., 2002, 55, 551; S. Aime, M. Botta and
E. Terreno, Adv. Inorg. Chem., 2005, 57, 173; P. Caravan,
J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev.,
1999, 99, 2293.
3 S. Faulkner and J. L. Matthews, Fluorescent and Luminescent
Complexes for Biomedical Applications, in Comprehensive
Coordination Chemistry, ed. M. D. Ward, Elsevier, Oxford,
2nd edn, 2004, ch. 21, vol. 9; I. A. Hemilla, Applications of
fluorescence in immunoassays, Wiley Interscience, New York, 1991.
4 S. Faulkner, S. J. A. Pope and B. P. Burton-Pye, Appl. Spectrosc. Rev.,
2005, 40, 1; T. Gunnlaugsson and J. P. Leonard, Chem. Commun.,
2005, 3114; C. M. G. dos Santos, A. J. Harte, S. J. Quinn and
T. Gunnlaugsson, Coord. Chem. Rev., 2008, 252, 2512.
5 A. Beeby, I. M. Clarkson, S. Faulkner, S. Botchway, D. Parker, J.
A. G. Williams and A. W. Parker, J. Photochem. Photobiol., B,
2000, 57, 83; L. Charbonniere, R. Ziessel, M. Guardigli, A. Roda,
N. Sabbatini and M. Cesario, J. Am. Chem. Soc., 2001, 123, 2436;
N. Weibel, L. J. Charbonniere, M. Guardigli, A. Roda and
R. Ziessel, J. Am. Chem. Soc., 2004, 126, 4888.
6 A. E. Merbach and E. Toth, in Comprehensive Coordination Chemistry,
ed. M. D. Ward, Elsevier, Oxford, 2nd edn, 2004, vol. 9.
7 R. J. Aarons, J. Notta, M. M. Meloni, J. Feng, S. Allan,
N. Spencer, R. A. Kauppinen, J. S. Snaith and S. Faulkner, Chem.
Commun., 2006, 909.
Reaction of H3Ybꢀ1 with terbium trifluoromethane-
sulfonate yielded TbYbꢀ1. The 1H NMR spectrum of this
complex (Fig. 1c) is very different to the other complexes,
containing a series of peaks at very large chemical shifts
corresponding to protons close to the terbium ion as well as
peaks at similar chemical shifts to those of Ybꢀ8, Ybꢀ9 and
H3Ybꢀ1. The striking difference in peak heights among the
pseudo-contact shifted peaks is a consequence of differences in
line-broadening due to differential relaxation of the protons
by the respective lanthanides. Upon closer inspection, the
linewidths of the cyclen ring protons in the binding pocket
accommodating the Yb3+ ion (100–140 ppm) are narrower
than in all the monometallic precursors and two sets of
resonances are observed. The relative intensities of these are
comparable, suggesting that they may result from the presence
of roughly equal populations of different diastereoisomers
under the conditions of the experiment.
8 For a review, see: S. Faulkner, L. S. Natrajan, W. S. Perry and
D. Sykes, Dalton Trans., 2009, 3890.
9 S. J. A. Pope, B. J. Coe, S. Faulkner, E. V. Bichenkova, X. Yu and
K. T. Douglas, J. Am. Chem. Soc., 2004, 126, 9490; S. J. A. Pope,
B. J. Coe and S. Faulkner, Chem. Commun., 2004, 1550; S. J.
A. Pope, B. J. Coe, S. Faulkner and R. H. Laye, Dalton Trans.,
2005, 1482; K. Senechal-David, S. J. A. Pope, S. Quinn,
´ ´
S. Faulkner and T. Gunnlaugsson, Inorg. Chem., 2006, 45, 10040.
10 S. Faulkner and S. J. A. Pope, J. Am. Chem. Soc., 2003, 125, 10526;
M. S. Tremblay and D. Sames, Chem. Commun., 2006, 4116.
11 T. Koullourou, L. S. Natrajan, H. Bhavsar, S. J. A. Pope, J. Feng,
J. Narvainen, R. Shaw, E. Scales, R. Kauppinen, A. M. Kenwright
and S. Faulkner, J. Am. Chem. Soc., 2008, 130, 2178.
12 A. Dadabhoy, S. Faulkner and P. G. Sammes, J. Chem. Soc.,
Perkin Trans. 2, 2000, 2359; A. Dadabhoy, S. Faulkner and
P. G. Sammes, J. Chem. Soc., Perkin Trans. 2, 2002, 348.
13 cf. the spectra in M. Main, M. M. Meloni, M. Jauregui, D. Sykes,
S. Faulkner, A. M. Kenwright and J. S. Snaith, Chem. Commun.,
2008, 5212.
14 S. Aime, M. Botta and G. Ermondi, Inorg. Chem., 1992, 31, 4291;
S. Aime, M. Botta, M. Fasano, M. P. M. Marques, C. F. G.
C. Geraldes, D. Pubanz and A. E. Merbach, Inorg. Chem., 1997,
36, 2059.
Furthermore, MALDI-MS revealed the presence of the
molecular ion with an isotopic distribution corresponding
closely to that predicted for TbYbꢀ1. This compound showed
sensitised luminescence from both the Tb3+ and Yb3+ metal
centres, respectively, in the visible and near IR. The inner
15 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker,
A. S. de Sousa and J. A. G. Williams, J. Chem. Soc., Perkin
Trans. 2, 1999, 493.
ꢁc
This journal is The Royal Society of Chemistry 2009
6022 | Chem. Commun., 2009, 6020–6022