Crystal data for 5b. C22H45NSi5, M = 464.04, monoclinic,
9.1616(9), 20.601(2), 14.7242(14) A,
References
a
=
b
=
c =
1 A. G. Brook, F. Abdesaken, B. Gutekunst, A. Gutekunst and
R. K. Kallury, J. Chem. Soc., Chem. Commun., 1981, 191.
2 R. West, M. J. Fink and J. Michl, Science, 1981, 214, 1343.
3 For reviews of silanimines, see: I. Hemme and U. Klingebiel, Adv.
b = 93.9340(10)1, V = 2772.5(5) A3, T = 100 K, space group
P21/n (no. 14), Z = 4, 31 160 reflections measured, 6256
unique (Rint = 0.0280) which were used in all calculations.
The final R1 and wR(F2) were 0.0250 (I > 2s(I)) and 0.0719
(all data).
Organomet. Chem., 1996, 39, 159; T. Muller, W. Ziche, and
¨
N. Auner, in The Chemistry of Organic Silicon Compounds, ed.
Z. Rappoport and Y. Apeloig, John Wiley & Sons, New York,
1998, vol. 2, ch. 16, p. 857; P. Neugebauer, B. Jaschke and
U. Klingebiel, ed. Z. Rappoport and Y. Apeloig, John Wiley &
Sons, New York, 2001, ch. 6, p. 429; U. Klingebiel and C. Matthes,
J. Organomet. Chem., 2007, 692, 2633.
Crystal data for 5c. C26H55NSi5, M = 522.16, triclinic,
a = 9.445(3), b = 10.618(3), c = 16.947(5) A, a = 95.035(3),
b = 93.948(3), g = 111.147(3)1, V = 1569.7(8) A3, T = 120 K,
4 N. Wiberg, S. Schurz and G. Fischer, Angew. Chem., Int. Ed. Engl.,
1986, 24, 1053.
ꢀ
space group P1 (no. 2), Z = 2, 17 268 reflections measured,
6926 unique (Rint = 0.0280) which were used in all calculations.
The final R1 and wR(F2) were 0.0381 (I > 2s(I)) and 0.1064
(all data).
5 N. Wiberg, K. Schurz, G. Reber and G. Muller, J. Chem. Soc.,
Chem. Commun., 1985, 591.
6 M. Hasse and U. Klingebiel, Angew. Chem., Int. Ed. Engl., 1986,
25, 649.
7 For examples of synthesis of Lewis base-coordinated silanimines,
¨
Crystal data for 5d. C19H49NSi6, M = 460.13, monoclinic,
a = 14.673(5), b = 9.188(3), c = 21.868(8) A, b = 96.864(4)1,
V = 2927.0(17) A3, T = 120 K, space group P21/c (no. 14),
Z = 2, 25 067 reflections measured, 6344 unique (Rint = 0.0531)
which were used in all calculations. The final R1 and wR(F2)
were 0.0415 (I > 2s(I)) and 0.1145 (all data).
see: (a) N. Wiberg, K. Schurz, G. Muller and J. Riede, Angew.
¨
Chem., Int. Ed. Engl., 1988, 27, 935; (b) N. Wiberg and K. Schurz,
J. Organomet. Chem., 1988, 341, 145; (c) G. Reber, J. Riede,
N. Wiberg, K. Schurz and G. Muller, Z. Naturforsch. B, 1989,
¨
44, 786; (d) S. Walter, U. Klingebiel and D. Schmidt-Base,
J. Organomet. Chem., 1991, 412, 319; (e) M. Denk,
R. K. Hayashi and R. West, J. Am. Chem. Soc., 1994, 116,
10813; (f) K. Junge, E. Popowski and M. Michalik, Z. Anorg.
Allg. Chem., 1999, 625, 1532; (g) H.-W. Lerner, N. Wiberg and
J. W. Bats, J. Organomet. Chem., 2005, 690, 3898;
(h) H.-W. Lerner, M. Bolte, K. Schurz, N. Wiberg, G. Baum,
D. Fenske, J. W. Bats and M. Wagner, Eur. J. Inorg. Chem., 2006,
4998.
8 For examples of synthesis of metal halides-coordinated
silanimines, see: (a) R. Boese and U. Klingebiel, J. Organomet.
Chem., 1986, 315, C17; (b) D. Stalke, U. Pieper, S. Vollbrecht and
U. Klingebiel, Z. Naturforsch. B, 1990, 45, 1513; (c) D. Grosskopf,
L. Marcus, U. Klingebiel and M. Noltemeyer, Phosphorus, Sulfur
Silicon Relat. Elem., 1994, 97, 113; (d) M. Jendras, U. Klingebiel
and M. Noltemeyer, J. Organomet. Chem., 2002, 646, 134.
9 L. J. Procopio, P. J. Carroll and D. H. Berry, J. Am. Chem. Soc.,
1991, 113, 1870; L. J. Procopio, P. J. Carroll and D. H. Berry,
Polyhedron, 1995, 14, 45.
Theoretical calculations
All theoretical calculations were performed using a Gaussian
0341 program and reaction routes were searched by the
ADDF13 and IRC34 methods available in the GRRM 1.2
program.13 Geometry optimization and potential surface
search of 6a–6d as a function of Si–N–R bending angle y for
model compounds was carried out at the B3LYP/
6-311+G(d,p) level. Optimized atomic coordinates of 6a–6d
are summarized in the ESIw. Absorption band maxima and
oscillator strengths of 5a–5d (whose structural parameters
were fixed to the experimental values determined by X-ray
analysis) were calculated at the TD-B3LYP/6-311+G(d,p)
level. For a reaction route search for formation of silanimines
H2SiQNH (7a), initial adducts 11a and 15a (whose geometries
were optimized at the B3LYP/6-311G(d) level) were used as
initial structures for the GRRM method.13 For exploration of
low-barrier routes to 7a, the large-ADD (lADD) method was
applied.13d Although automatic reaction route search using
GRRM methods explored various reaction routes among
H3SiN isomers including 7a, only the reaction routes to 7a
with the smallest activation barrier, except for the degenerate
rearrangements such as a configuration inversion, are shown
in Fig. 10. For a reaction route search for formation of
silanimines Me2SiQNMe (7b), the corresponding equilibrium
structures (EQ) and transition state structures (TS) 7b–TS18b
were optimized at the B3LYP/6-31G(d) level. Optimized
atomic coordinates of 7, and 11-TS18 are also summarized
in the ESI.
10 J. Niesmann, U. Klingebiel, M. Schafer and R. Boese, Organo-
metallics, 1998, 17, 947.
11 M. Kira, T. Iwamoto, C. Kabuto and S. Ishida, J. Am. Chem. Soc.,
1999, 121, 9722. For a recent review of the chemistry of silylene 4,
see: M. Kira, T. Iwamoto and S. Ishida, Bull. Chem. Soc. Jpn.,
2007, 80, 258.
12 For our recent studies on the unsaturated silicon compounds with
alkylsubstituents, see: (a) S. Ishida, T. Iwamoto, C. Kabuto and
M. Kira, Nature, 2003, 421, 725; (b) T. Iwamoto, T. Abe,
C. Kabuto and M. Kira, Chem. Commun., 2005, 5190;
(c) T. Iwamoto, K. Sato, S. Ishida, C. Kabuto and M. Kira,
J. Am. Chem. Soc., 2006, 128, 16914; (d) T. Abe, T. Iwamoto,
C. Kabuto and M. Kira, J. Am. Chem. Soc., 2006, 128, 4228;
(e) R. Tanaka, T. Iwamoto and M. Kira, Angew. Chem., Int. Ed.,
2006, 45, 6371; (f) K. Uchiyama, S. Nagendran, S. Ishida,
T. Iwamoto and M. Kira, J. Am. Chem. Soc., 2007, 129, 10638;
(g) T. Iwamoto, M. Kobayashi, K. Uchiyama, S. Sasaki,
S. Nagendran, H. Isobe and M. Kira, J. Am. Chem. Soc., 2009,
131, 3156. See, also C. Watanabe, T. Iwamoto, C. Kabuto and
M. Kira, Angew. Chem., Int. Ed., 2008, 47, 5386.
13 (a) K. Ohno and S. Maeda, Chem. Phys. Lett., 2004, 384, 277;
(b) S. Maeda and K. Ohno, J. Phys. Chem. A, 2005, 109, 5742;
(c) K. Ohno and S. Maeda, J. Phys. Chem. A, 2006, 110, 8933;
(d) S. Maeda and K. Ohno, J. Phys. Chem. A, 2007, 111, 4527.
14 For reactions of silylenes with azides, see: M. Weidenbruch,
B. Brand-Roth, S. Pohl and W. Saak, J. Organomet. Chem.,
1989, 379, 217. See also ref. 7e.
Acknowledgements
This work was supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan [Specially
Promoted Research (No. 17002005, M.K. and T.I.), a
Grant-in-Aid for Scientific Research on Innovative Areas
(No. 21108501, ‘‘pi-Space’’, T.I.), and a Grant-in-Aid for
Scientific Research B (No. 21350007, T.I. and K.O.)].
15 Reaction proceeded even at ꢁ60 1C.
16 (a) R. West and M. Denk, Pure Appl. Chem., 1996, 68, 785;
(b) B. Gehrhus, P. B. Hitchcock and M. F. Lappert, Z. Anorg.
Allg. Chem., 2001, 627, 1048; (c) N. J. Hill, D. F. Moser, I. Guzei
and R. West, Organometallics, 2005, 24, 3346; (d) A. C. Tomasic,
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
1644 | New J. Chem., 2010, 34, 1637–1645