A R T I C L E S
Sasaki et al.
Diels-Alder reaction could be conducted under milder conditions11
than previously observed. More significantly, this change permitted
the effective control of the facial selectivity of the initiating
Diels-Alder reaction and subsequent transmission of the attached
substituent stereochemistry throughout the newly constructed
pentacyclic ring system that was not observed with a longer
dienophile tether.10 The approach required that the activating acyl
chain carbonyl now reside in the dipolarophile tether and that the
initiating Diels-Alder reaction of the cycloaddition cascade afford
a fused 5-membered ring. A subsequent ring expansion to provide
the unsaturated 6-membered ring found in the core structure of
the natural products was anticipated to be accomplished by using
a hydroxymethyl side chain substituent that, upon alcohol activation
for displacement, would undergo aziridinium ion formation and
subsequent nucleophilic attack to provide a more stable 6- versus
5-membered ring suitably functionalized for introduction of the
∆6,7-double bond. As detailed herein, this rearrangement is subject
to stereoelectronic control for both the aziridinium ion formation
as well as its subsequent cleavage by nucleophilic attack, the latter
of which also proved to be subject to kinetic and thermodynamic
control of the regioselectivity. Investigations into these issues
provided a unique and remarkably concise approach to the total
synthesis of the natural products, clarified an important stereo-
chemical requirement for the final regioselective elimination, and
ultimately led to the development of an additional second unan-
ticipated approach to the key ring expansion.
Results and Discussion
Cycloaddition Substrate Preparation and Examination of
the Cycloaddition Cascade. The most important question ad-
dressed in initial studies was the stereochemical fate of the key
(8) Racemic total syntheses: (a) Ando, M.; Bu¨chi, G.; Ohnuma, T. J. Am.
Chem. Soc. 1975, 97, 6880. (b) Kutney, J. P.; Bunzli-Trepp, U.; Chan,
K. K.; De Souza, J. P.; Fujise, Y.; Honda, T.; Katsube, J.; Klein, F. K.;
Leutwiler, A.; Morehead, S.; Rohr, M.; Worth, B. R. J. Am. Chem.
Soc. 1978, 100, 4220. (c) Andriamialisoa, R. Z.; Langlois, N.; Langlois,
Y. J. Org. Chem. 1985, 50, 961. (d) Ban, Y.; Sekine, Y.; Oishi, T.
Tetrahedron Lett. 1978, 2, 151. (e) Takano, S.; Shishido, K.; Sato,
M.; Yuta, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1978,
943. Takano, S.; Shishido, K.; Matsuzaka, J.; Sato, M.; Ogasawara,
K. Heterocycles 1979, 13, 307. (f) Danieli, B.; Lesma, G.; Palmisano,
G.; Riva, R. J. Chem. Soc., Chem. Commun. 1984, 909. Danieli, B.;
Lesma, G.; Palmisano, G.; Riva, R. J. Chem. Soc., Perkin Trans. 1
1987, 155. (g) Zhou, S.; Bommeziijn, S.; Murphy, J. A. Org. Lett.
2002, 4, 443.
Figure 2. Key elements of the initial synthetic strategy.
Herein, we report full details13 of the development of
asymmetric total syntheses of vindoline (1) and the related
natural product vindorosine (2) based on an additional imple-
mentation of the tandem [4 + 2]/[3 + 2] cycloaddition reaction
in which the tether linking the initiating dienophile and
oxadiazole bears a chiral substituent that sets absolute stereo-
chemistry of the remaining six stereocenters in the cascade
cycloadducts (Figure 2).
(9) Enantioselective total syntheses: (a) Feldman, P. L.; Rapoport, H.
J. Am. Chem. Soc. 1987, 109, 1603. (b) Kuehne, M. E.; Podhorez,
D. E.; Mulamba, T.; Bornmann, W. G. J. Org. Chem. 1987, 52, 347.
(c) Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem.
Soc. 1988, 110, 2242. (d) Kobayashi, S.; Ueda, T.; Fukuyama, T.
Synlett 2000, 883.
(10) (a) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L.
J. Am. Chem. Soc. 2006, 128, 10596. (b) Choi, Y.; Ishikawa, H.;
Velcicky, J.; Elliott, G. I.; Miller, M. M.; Boger, D. L. Org. Lett.
2005, 7, 4539.
(11) (a) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.;
Soenen, D. B.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem.
Soc. 2002, 124, 11292. (b) Elliott, G. I.; Fuchs, J. R.; Blagg, B. S. J.;
Ishikawa, H.; Tao, H.; Yuan, Z.; Boger, D. L. J. Am. Chem. Soc. 2006,
128, 10589. For reviews of heterocyclic azadiene cycloaddition
reactions, see: (c) Boger, D. L. Tetrahedron 1983, 39, 2869. (d) Boger,
D. L. Chem. ReV. 1986, 86, 781. (e) Boger, D. L.; Weinreb, S. M.
Hetero Diels-Alder Methodology in Organic Synthesis; Academic: San
Diego, 1987.
Relative to our early work,10 the dienophile linking tether was
reduced in length by one carbon ensuring that the initiating
(6) (a) Mangeney, P.; Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y.;
Potier, P. J. Am. Chem. Soc. 1979, 101, 2243. (b) Kutney, J. P.; Choi,
L. S. L.; Nakano, J.; Tsukamoto, H.; McHugh, M.; Boulet, C. A.
Heterocycles 1988, 27, 1845. (c) Kuehne, M. E.; Matson, P. A.;
Bornmann, W. G. J. Org. Chem. 1991, 56, 513. Bornmann, W. G.;
Kuehne, M. E. J. Org. Chem. 1992, 57, 1752. Kuehne, M. E.; Zebovitz,
T. C.; Bornmann, W. G.; Marko, I. J. Org. Chem. 1987, 52, 4340. (d)
Magnus, P.; Mendoza, J. S.; Stamford, A.; Ladlow, M.; Willis, P.
J. Am. Chem. Soc. 1992, 114, 10232. (e) Yokoshima, S.; Ueda, T.;
Kobayashi, S.; Sato, A.; Kuboyama, T.; Tokuyama, H.; Fukuyama,
T. J. Am. Chem. Soc. 2002, 124, 2137. Kuboyama, T.; Yokoshima,
S.; Tokuyama, H.; Fukuyama, T. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 11966. (f) Ishikawa, H.; Colby, D. A.; Boger, D. L. J. Am. Chem.
Soc. 2008, 130, 420. Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.;
Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem.
Soc. 2009, 131, 4904.
(12) (a) Elliott, G. I.; Velcicky, J.; Ishikawa, H.; Li, Y.; Boger, D. L. Angew.
Chem., Int. Ed. 2006, 45, 620. (b) Yuan, Z.; Ishikawa, H.; Boger,
D. L. Org. Lett. 2005, 7, 741. (c) Ishikawa, H.; Boger, D. L.
Heterocycles 2007, 72, 95. (d) Campbell, E. L.; Zuhl, A. M.; Liu,
C. M.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 3009. (e) Va, P.;
Campbell, E. L.; Robertson, W. M.; Boger, D. L. J. Am. Chem. Soc.
2010, 132, 8489.
(7) Review: Kuehne, M. E.; Marko, I. In The Alkaloids; Brossi, A.,
Suffness, M., Eds.; Academic: San Diego, 1990; Vol. 37, p 77.
(13) Kato, D.; Sasaki, Y.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 3685.
9
13534 J. AM. CHEM. SOC. VOL. 132, NO. 38, 2010